For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 15, Number 2, 2025, Pages -                                                                DOI:10.11948/JAAC-2024-0121
Global dynamics of a reaction-diffusion SEIVQR epidemic model in almost periodic environments
Yifan Xing,Hong-Xu Li
Keywords:Reaction-diffusion, Almost periodicity, Upper Lyapunov exponent, Threshold dynamics.
Abstract:
      We have formulated an almost periodic reaction-diffusion SEIVQR epidemic model that incorporates quarantine, vaccination, and a latent period. In contrast to prior methods that analyze stability by using Lyapunov functions, we establish the global threshold dynamics of this model by using the upper Lyapunov exponent $\lambda^*$. Our results demonstrate that the disease-free almost periodic equilibrium is globally asymptotically stable if $\lambda^*<0$, whereas the disease uniformly persists if $\lambda^*>0$. To further validate our conclusions, we conducted numerical simulations of the model.
PDF      Download reader