Volume 10, Number 4, 2020, Pages 1651-1665 DOI:10.11948/20190311 |
Transverse homoclinic orbit bifurcated from a homoclinic manifold by the higher order melnikov integrals |
Bin Long,Changrong Zhu |
Keywords:Homoclinic manifold, Lyapunov-Schmidt reduction, exponential dichotomies, Melnikov integral, chaos. |
Abstract: |
Consider an autonomous ordinary differential equation in $\mathbb{R}^n$ that has a $d$ dimensional homoclinic solution manifold $W^H$. Suppose the homoclinic manifold can be locally parametrized by $(\alpha,\theta) \in \mathbb{R}^{d-1}\times \mathbb{R}$. We study the bifurcation of the homoclinic solution manifold $W^H$ under periodic perturbations. Using exponential dichotomies and Lyapunov-Schmidt reduction, we obtain the higher order Melnikov function. For a fixed $(\alpha_0,\theta_0)$ on $W^H$, if the Melnikov function have a simple zeros,
then the perturbed system can have transverse homoclinic solutions near $W^H$. |
PDF Download reader
|
|
|
|