For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 10, Number 4, 2020, Pages 1651-1665                                                                DOI:10.11948/20190311
Transverse homoclinic orbit bifurcated from a homoclinic manifold by the higher order melnikov integrals
Bin Long,Changrong Zhu
Keywords:Homoclinic manifold, Lyapunov-Schmidt reduction, exponential dichotomies, Melnikov integral, chaos.
Abstract:
      Consider an autonomous ordinary differential equation in $\mathbb{R}^n$ that has a $d$ dimensional homoclinic solution manifold $W^H$. Suppose the homoclinic manifold can be locally parametrized by $(\alpha,\theta) \in \mathbb{R}^{d-1}\times \mathbb{R}$. We study the bifurcation of the homoclinic solution manifold $W^H$ under periodic perturbations. Using exponential dichotomies and Lyapunov-Schmidt reduction, we obtain the higher order Melnikov function. For a fixed $(\alpha_0,\theta_0)$ on $W^H$, if the Melnikov function have a simple zeros, then the perturbed system can have transverse homoclinic solutions near $W^H$.
PDF      Download reader