All Issues

Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 10, Number 4, 2020, Pages 1651-1665                                                                DOI:10.11948/20190311
Transverse homoclinic orbit bifurcated from a homoclinic manifold by the higher order melnikov integrals
Bin Long,Changrong Zhu
Keywords:Homoclinic manifold, Lyapunov-Schmidt reduction, exponential dichotomies, Melnikov integral, chaos.
      Consider an autonomous ordinary differential equation in $\mathbb{R}^n$ that has a $d$ dimensional homoclinic solution manifold $W^H$. Suppose the homoclinic manifold can be locally parametrized by $(\alpha,\theta) \in \mathbb{R}^{d-1}\times \mathbb{R}$. We study the bifurcation of the homoclinic solution manifold $W^H$ under periodic perturbations. Using exponential dichotomies and Lyapunov-Schmidt reduction, we obtain the higher order Melnikov function. For a fixed $(\alpha_0,\theta_0)$ on $W^H$, if the Melnikov function have a simple zeros, then the perturbed system can have transverse homoclinic solutions near $W^H$.
PDF      Download reader