For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 10, Number 5, 2020, Pages 1912-1917                                                                DOI:10.11948/20190286
Infinitely many solutions for a nonlocal problem
Zhiyun Tang,Zengqi Ou
Keywords:Nonlocal problems, infinitely many solutions, the $(P.S.)_c$ condition, the equivariant link theorem.
Abstract:
      Consider a class of nonlocal problems $$ \left \{\begin{array}{ll} -(a-b\int_{\Omega}|\nabla u|^2dx)\Delta u= f(x,u),& \textrm{$x \in\Omega$},\u=0, & \textrm{$x \in\partial\Omega$}, \end{array} \right. $$ where $a>0, b>0$,~$\Omega\subset \mathbb{R}^N$ is a bounded open domain, $f:\overline{\Omega} \times \mathbb R \longrightarrow \mathbb R $ is a Carath$\acute{\mbox{e}}$odory function. Under suitable conditions, the equivariant link theorem without the $(P.S.)$ condition due to Willem is applied to prove that the above problem has infinitely many solutions, whose energy increasingly tends to $a^2/(4b)$, and they are neither large nor small.
PDF      Download reader