For EDITORS

For READERS

All Issues

Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 10, Number 6, 2020, Pages 2362-2380                                                                DOI:10.11948/20190220
On the number of limit cycles by perturbing a piecewise smooth Hamilton system with two straight lines of separation
Jihua Yang
Keywords:Piecewise smooth Hamilton system, limit cycle, generalized homoclinic loop, Melnikov function.
Abstract:
      This paper deals with the problem of limit cycle bifurcations for a piecewise smooth Hamilton system with two straight lines of separation. By analyzing the obtained first order Melnikov function, we give upper and lower bounds of the number of limit cycles bifurcating from the period annulus between the origin and the generalized homoclinic loop. It is found that the first order Melnikov function is more complicated than in the case with one straight line of separation and more limit cycles can be bifurcated.
PDF      Download reader