For EDITORS

For READERS

All Issues

Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 10, Number 4, 2020, Pages 1267-1281                                                                DOI:10.11948/20190177
Global relaxed modulus-based synchronous block multisplitting multi-parameters methods for linear complementarity problems
Litao Zhang,Yifan Zhang,Xianyu Zuo
Keywords:Global relaxed modulus-based method; Linear complementarity problem; Block multisplitting; Block H+?matrix; Synchronous multisplitting
Abstract:
      Recently, Bai and Zhang [Numerical Linear Algebra with Applications, 20(2013):425439] constructed modulus-based synchronous multisplitting methods by an equivalent reformulation of the linear complementarity problem into a system of ?xed-point equations and studied the convergence of them; Li et al. [Journal of Nanchang University (Natural Science), 37(2013):307-312] studied synchronous block multisplitting iteration methods; Zhang and Li [Computers and Mathematics with Application, 67(2014):1954-1959] analyzed and obtained the weaker convergence results for linear complementarity problems. In this paper, we generalize their algorithms and further study global relaxed modulus-based synchronous block multisplitting multi-parameters methods for linear complementarity problems. Furthermore, we give the weaker convergence results of our new method in this paper when the system matrix is a block H+?matrix. Therefore, new results provide a guarantee for the optimal relaxation parameters, please refer to [A. Hadjidimos, M. Lapidakis and M. Tzoumas, SIAM Journal on Matrix Analysis and Applications, 33(2012):97-110, (dx.doi.org/10.1137/100811222)], where optimal parameters are determined.
PDF      Download reader