For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 10, Number 3, 2020, Pages 935-945                                                                DOI:10.11948/20190162
Lumps and their interaction solutions of a (2+1)-dimensional generalized potential Kadomtsev-Petviashvili equation
Bo Ren,Ji Lin,Zhi-Mei Lou
Keywords:Generalized potential Kadomtsev-Petviashvili equation, Hirota bilinear form, lump wave, lump-soliton.
Abstract:
      A (2+1)-dimensional generalized potential Kadomtsev-Petviashvili (gpKP) equation which possesses a Hirota bilinear form is constructed. The lump waves are derived by using a positive quadratic function solution. By combining an exponential function with a quadratic function, an interaction solution between a lump and a one-kink soliton is obtained. Furthermore, an interaction solution between a lump and a two-kink soliton is presented by mixing two exponential functions with a quadratic function. This type of lump wave just appears to a line $k_2x+k_3y+k_4t+k_5 \sim 0$. We call this kind of lump wave is a special rogue wave. Some visual figures are depicted to explain the propagation phenomena of these interaction solutions.
PDF      Download reader