All Issues

Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 10, Number 1, 2020, Pages 210-222                                                                DOI:10.11948/20190113
Bifurcations and exact travelling wave solutions of M-N-Wang equation
Weihong Mao
Keywords:Solitary wave solution, periodic peakon, anti-peakon, Mikhailov-Novikov-Wang integrable equation.
      By using the method of dynamical systems to Mikhailov-Novikov-Wang Equation, through qualitative analysis, we obtain bifurcations of phase portraits of the traveling system of the derivative $\phi(\xi)$ of the wave function $\psi(\xi)$. Under different parameter conditions, for $\phi(\xi)$, exact explicit solitary wave solutions, periodic peakon and anti-peakon solutions are obtained. By integrating known $\phi(\xi)$, nine exact explicit traveling wave solutions of $\psi(\xi)$ are given.
PDF      Download reader