For EDITORS

For READERS

All Issues

Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 9, Number 2, 2019, Pages 615-627                                                                DOI:10.11948/2156-907X.20180127
Stagnation point flow of dusty Casson fluid with thermal radiation and buoyancy effects
Murugan Muthtamilselvan
Keywords:Casson fluid, dusty fluid, stagnation point, thermal radiation, buoyancy.
Abstract:
      The aim of the study is to examine the stagnation point flow of a dusty Casson fluid over a stretching sheet with thermal radiation and buoyancy effects. The governing boundary layer equations are represented by a system of partial differential equation. After applying suitable similarity transformations, the resulting boundary layer equations are solved numerically using the Runge Kutta Fehlberg fourth-fifth order method (RKF-45 method). The behaviors of velocity, temperature and concentration profiles of fluid and dusty particles with respect to change in fluid particle interaction parameter, Casson paramter, Grashof number, radiation parameter, Prandtl number, number density, thermal equilibrium time, relaxation time, specific heat of fluid and dusty particles, ratio of diffusion coefficients, Schmidt number and Eckert number are analysed graphically and discussed. Our computed results interpret that velocity distribution decays for higher estimation of Casson parameter while temperature distribution shows increasing behavior for larger radiation parameter.
PDF      Download reader