For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 8, Number 3, 2018, Pages 836-858                                                                DOI:10.11948/2018.836
Asymptotic behavior in chemical reaction-diffusion systems with boundary equilibria
Michel Pierre,Takashi Suzuki,Haruki Umakoshi
Keywords:reaction-diffusion systems, asymptotic behavior of solution, convergence to equilibrium
Abstract:
      We consider the asymptotic behavior for large time of solutions to reaction-diffusion systems modeling reversible chemical reactions. We focus on the case where multiple equilibria exist. In this case, due to the existence of so-called "boundary equilibria", the analysis of the asymptotic behavior is not obvious. The solution is understood in a weak sense as a limit of adequate approximate solutions. We prove that this solution converges in L^1 toward an equilibrium as time goes to infinity and that the convergence is exponential if the limit is strictly positive.
PDF      Download reader