For EDITORS

For READERS

All Issues

Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 9, Number 6, 2019, Pages 2096-2110                                                                DOI:10.11948/20180041
Threshold dynamics in a stochastic SIRS epidemic model with nonlinear incidence rate
Yanan Zhao,Xiaoying Zhang,Donal O'Regan
Keywords:SIRS epidemic model, nonlinear incidence rate, extinction, persistence, threshold.
Abstract:
      We discuss the dynamic of a stochastic Susceptible-Infectious-Recovered-Susceptible (SIRS) epidemic model with nonlinear incidence rate.The crucial threshold $\tilde{R}_0$ is identified and this will determine the extinction and persistence of the epidemic when the noise is small. We also discuss the asymptotic behavior of the stochastic model around the endemic equilibrium of the corresponding deterministic system. When the noise is large, we find that a large noise intensity has the effect of suppressing the epidemic, so that it dies out. Finally, these results are illustrated by computer simulations.
PDF      Download reader