For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 8, Number 1, 2018, Pages 229-249                                                                DOI:10.11948/2018.229
Finite element algorithm based on high-order time approximation for time fractional convection-diffusion equation
Xinfei Liu,Yang Liu,Hong Li,Zhichao Fang,Jinfeng Wang
Keywords:Time fractional convection-diffusion equation, high-order approximation, finite element method, error estimates.
Abstract:
      In this paper, finite element method with high-order approximation for time fractional derivative is considered and discussed to find the numerical solution of time fractional convection-diffusion equation. Some lemmas are introduced and proved, further the stability and error estimates are discussed and analyzed, respectively. The convergence result $O(h^{r+1}+\tau^{3-\alpha})$ can be derived, which illustrates that time convergence rate is higher than the order $(2-\alpha)$ derived by $L1$-approximation. Finally, to validate our theoretical results, some computing data are provided.
PDF      Download reader