For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 7, Number 4, 2017, Pages 1336-1356                                                                DOI:10.11948/2017082
Two CSCS-based iteration methods for solving absolute value equations
Xian-Ming Gu,Ting-Zhu Huang,Hou-Biao Li,Sheng-Feng Wang,Liang Li
Keywords:Absolute value equation, CSCS-based iteration, toeplitz matrix, nonsmooth analysis, fast Fourier transform.
Abstract:
      Recently, two families of HSS-based iteration methods are constructed for solving the system of absolute value equations (AVEs), which is a class of non-differentiable NP-hard problems. In this study, we establish the Picard-CSCS iteration method and the nonlinear CSCS-like iteration method for AVEs involving the Toeplitz matrix. Then, we analyze the convergence of the Picard-CSCS iteration method for solving AVEs. By using the theory about nonsmooth analysis, we particularly prove the convergence of the nonlinear CSCS-like iteration solver for AVEs. The advantage of these methods is that they do not require the storage of coefficient matrices at all, and the sub-system of linear equations can be solved efficiently via the fast Fourier transforms (FFTs). Therefore, computational cost and storage can be saved in practical implementations. Numerical examples including numerical solutions of nonlinear fractional diffusion equations are reported to show the effectiveness of the proposed methods in comparison with some existing methods.
PDF      Download reader