For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 5, Number 3, 2015, Pages 273-283                                                                DOI:10.11948/2015025
A New defy for iteration methods
Abdon Atangana
Keywords:Extension of iteration method
Abstract:
      The work presents an adaptation of iteration method for solving a class of thirst order partial nonlinear differential equation with mixed derivatives.The class of partial differential equations present here is not solvable with neither the method of Green function, the most usual iteration methods for instance variational iteration method, homotopy perturbation method and Adomian decomposition method, nor integral transform for instance Laplace,Sumudu, Fourier and Mellin transform. We presented the stability and convergence of the used method for solving this class of nonlinear chaotic equations.Using the proposed method, we obtained exact solutions to this kind of equations.
PDF      Download reader