For EDITORS

For READERS

All Issues

Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 5, Number 2, 2015, Pages 243-250                                                                DOI:10.11948/2015022
Chaos time-domain reflectometry for fault location on live wires
Hang Xu,Jingxia Li,Li Liu,Bingjie Wang,Jianguo Zhang,Yuncai Wang
Keywords:Chaotic signal, high density bipolar of order 3, fault location, live wire.
Abstract:
      We propose a chaos time-domain reflectometry (CTDR) for locating faults on live wires. This method uses a chaotic output of an improved Colpitts oscillator as probe signal, and detects wire faults by correlating a duplicate with the echo of the probe signal. Benefiting from the anti-jamming of the correlation function of the wideband chaos, fault location on live wires can be achieved. We experimentally demonstrate the detection for live wires in a digital communication system, in which a type of digital signal named high density bipolar of order 3 (HDB3) is transmitted. The effects of the chaotic probe signal on the bit error rate (BER) of the transmitted HDB3 at different rates are analyzed. Meanwhile, the influences of the backward HDB3 reflected by wiring faults on the signal-noise-ratio (SNR) of CTDR measurement are examined experimentally. The results show that fault detection on live wires is achieved when the power of the chaotic probe signal is about from -24.8 dB to -13.5 dB lower than that of the transmitted digital signal. In this case, the BER is kept less than 3E-10, and the SNR of CTDR is higher than 3 dB. Besides, the auto-correlation properties of the improved Colpitts oscillator at different states are investigated experimentally to explore the suitable chaotic states for the CTDR.
PDF      Download reader