For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 4, Number 3, 2014, Pages 295-306                                                                DOI:10.11948/2014015
Elliptic reconstruction and a posteriori error estimates for parabolic optimal control problems
Yuelong Tang,Yuchun Hua
Keywords:A posteriori error estimates
Abstract:
      In this article, a semidiscrete finite element method for parabolic optimal control problems is investigate. By using elliptic reconstruction, a posteriori error estimates for finite element discretizations of optimal control problem governed by parabolic equations with integral constraints are derived.
PDF      Download reader