For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 1, Number 4, 2011, Pages 439-447                                                                DOI:10.11948/2011030
Cyclicity of several quadratic reversible systems with center of genus one
Long Chen,Xianzhong Ma,Gemeng Zhang,Chengzhi Li
Keywords:Cyclicity of period annulus
Abstract:
      By using the Chebyshev criterion to study the number of zeros of Abelian integrals, developed by M. Grau, F. Ma\(\~n\)osas and J. Villadelprat in [2], we prove that the cyclicity of period annulus of the quadratic reversible systems with center of genus one, classified as (r8), (r13) and (r16) by S. Gautier, L. Gavrilov and I. D. Iliev in [1], under quadratic perturbations is two. These results partially give a positive answer to the conjecture 1 in [1].
PDF      Download reader