For EDITORS

For READERS

All Issues

Vol.15, 2025
Vol.14, 2024
Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 1, Number 2, 2011, Pages 279-290                                                                DOI:10.11948/2011019
Duality theory of regularized resolvent operator family
Jizhou Zhang,Yeping Li
Keywords:k-regularized resolvent operator family, pseudo k-resolvent, duality, Favard space.
Abstract:
      Let \( k \in C(R^+)\), A be a closed linear densely defined operator in the Banach space \(X\) and \( \{R(t)\}_{t\geq 0} \) be an exponentially bounded \(k\)-regularized resolvent operator families generated by A. In this paper, we mainly study pseudo k-resolvent and duality theory of k-regularized resolvent operator families. The conditions that pseudo k-resolvent become k-resolvent of the closed linear densely defined operator A are given. The some relations between the duality of the regularized resolvent operator families and the generator A are gotten. In addition, the corresponding results of duality of \(k\)-regularized resolvent operator families in Favard space are educed.
PDF      Download reader