For EDITORS

For READERS

All Issues

Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Bifurcation of limit cycles from the global center of a class of integrable non-Hamilton systems
Keywords:Limit cycle, averaging function, bifurcation.
Abstract:
      In this paper, we consider the bifurcation of limit cycles for system $\dot{x}=-y(x^2+a^2)^m,~\dot{y}=x(x^2+a^2)^m$ under perturbations of polynomials with degree n, where $a\neq0$, $m\in \mathbb{N}$. By using the averaging method of first order, we bound the number of limit cycles that can bifurcate from periodic orbits of the center of the unperturbed system. Particularly, if $m=2, n=5$, the sharp bound is 5.