For EDITORS

For READERS

All Issues

Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Multiple sign-changing solutions for a class of semilinear elliptic equations in $\mathbb{R}^{N}$}
He Xiumei
Keywords:semilinear elliptic equations; critical point theorem, sign-changing solutions
Abstract:
      In this paper, we study the following semilinear elliptic equations $$-\triangle u+V(x)u=f(x,u), \ \ x\in \mathbb{R}^{N},$$ where $V\in C(\mathbb{R}^{N}, \mathbb{R})$ and $f\in C(\mathbb{R}^{N}\times\mathbb{R}, mathbb{R})$. Under some suitable conditions, we prove that the equation has three solutions of mountain pass type: one positive, one negative, and sign-changing. Furthermore, if $f$ is odd with respect to its second variable, this problem has infinitely many sign-changing solutions.