### All Issues

Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
 Volume 10, Number 5, 2020, Pages 2121-2144 Existence and concentration result for Kirchhoff equations with critical exponent and Hartree nonlinearity Guofeng Che,Haibo Chen Keywords:Kirchhoff equations, critical Sobolev exponent, Hartree-type nonlinearity, concentration-compactness principle. Abstract: This paper is concerned with the following Kirchhoff-type equations $$\left\{ \begin{array}{ll} \displaystyle -\big(\varepsilon^{2}a+\varepsilon b\int_{\mathbb{R}^{3}}|\nabla u|^{2}\mathrm{d}x\big)\Delta u + V(x)u+\mu\phi |u|^{p-2}u=f(x,u), &\quad \mbox{ in }\mathbb{R}^{3},\(-\Delta)^{\frac{\alpha}{2}} \phi=\mu|u|^{p},~u>0, &\quad \mbox{ in }\mathbb{R}^{3},\\end{array} \right.$$ where $f(x,u)=\lambda K(x)|u|^{q-2}u+Q(x)|u|^{4}u$, $a>0,~b,~\mu\geq0$ are constants, $\alpha\in(0,3)$, $p\in[2,3),~q\in[2p,6)$ and $\varepsilon,~\lambda>0$ are parameters. Under some mild conditions on $V(x),~K(x)$ and $Q(x)$, we prove that the above system possesses a ground state solution $u_{\varepsilon}$ with exponential decay at infinity for $\lambda>0$ and $\varepsilon$ small enough. Furthermore, $u_{\varepsilon}$ concentrates around a global minimum point of $V(x)$ as $\varepsilon\rightarrow0$. The methods used here are based on minimax theorems and the concentration-compactness principle of Lions. Our results generalize and improve those in Liu and Guo (Z Angew Math Phys 66: 747-769, 2015), Zhao and Zhao (Nonlinear Anal 70: 2150-2164, 2009) and some other related literature. PDF      Download reader