For EDITORS

For READERS

All Issues

Vol.10, 2020
Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 10, Number 5, 2020, Pages 2121-2144                                                                DOI:10.11948/20190338
Existence and concentration result for Kirchhoff equations with critical exponent and Hartree nonlinearity
Guofeng Che,Haibo Chen
Keywords:Kirchhoff equations, critical Sobolev exponent, Hartree-type nonlinearity, concentration-compactness principle.
Abstract:
      This paper is concerned with the following Kirchhoff-type equations $$ \left\{ \begin{array}{ll} \displaystyle -\big(\varepsilon^{2}a+\varepsilon b\int_{\mathbb{R}^{3}}|\nabla u|^{2}\mathrm{d}x\big)\Delta u + V(x)u+\mu\phi |u|^{p-2}u=f(x,u), &\quad \mbox{ in }\mathbb{R}^{3},\(-\Delta)^{\frac{\alpha}{2}} \phi=\mu|u|^{p},~u>0, &\quad \mbox{ in }\mathbb{R}^{3},\\end{array} \right. $$ where $f(x,u)=\lambda K(x)|u|^{q-2}u+Q(x)|u|^{4}u$, $a>0,~b,~\mu\geq0$ are constants, $\alpha\in(0,3)$, $p\in[2,3),~q\in[2p,6)$ and $\varepsilon,~\lambda>0$ are parameters. Under some mild conditions on $V(x),~K(x)$ and $Q(x)$, we prove that the above system possesses a ground state solution $u_{\varepsilon}$ with exponential decay at infinity for $\lambda>0$ and $\varepsilon$ small enough. Furthermore, $u_{\varepsilon}$ concentrates around a global minimum point of $V(x)$ as $\varepsilon\rightarrow0$. The methods used here are based on minimax theorems and the concentration-compactness principle of Lions. Our results generalize and improve those in Liu and Guo (Z Angew Math Phys 66: 747-769, 2015), Zhao and Zhao (Nonlinear Anal 70: 2150-2164, 2009) and some other related literature.
PDF      Download reader