For EDITORS

For READERS

All Issues

Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 9, Number 3, 2019, Pages 864-883                                                                DOI:10.11948/2156-907X.20180083
On the limit cycles for a class of generalized Kukles differential systems
Amel Boulfoul,Amar Makhlouf,Nawal Mellahi
Keywords:Limit cycle, averaging theory, Kukles systems.
Abstract:
      In this paper, we consider the limit cycles of a class of polynomial differential systems of the form $\dot{x}=-y, \hspace{0.2cm} \dot{y}=x-f(x)-g(x)y-h(x)y^{2}-l(x)y^{3},$ where $f(x)=\epsilon f_{1}(x)+\epsilon^{2}f_{2}(x),$ $g(x)=\epsilon g_{1}(x)+\epsilon^{2}g_{2}(x),$ $h(x)=\epsilon h_{1}(x)+\epsilon^{2}h_{2}(x)$ and $l(x)=\epsilon l_{1}(x)+\epsilon^{2}l_{2}(x)$ where $f_{k}(x),$ $g_{k}(x),$ $h_{k}(x)$ and $l_{k}(x)$ have degree $n_{1},$ $n_{2},$ $n_{3}$ and $n_{4},$ respectively for each $k=1,2,$ and $\varepsilon$ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot{x}=-y,$ $\dot{y}=x$ using the averaging theory of first and second order.
PDF      Download reader