For EDITORS

For READERS

All Issues

Vol.9, 2019
Vol.8, 2018
Vol.7, 2017
Vol.6, 2016
Vol.5, 2015
Vol.4, 2014
Vol.3, 2013
Vol.2, 2012
Vol.1, 2011
Volume 8, Number 6, 2018, Pages 1707-1726                                                                DOI:10.11948/2018.1707
Asymptotic behavior of nabla half order $h$-difference equations
Baoguo Jia,Feifei Du,Lynn Erbe,Allan Peterson
Keywords:Laplace transform, Mittag-Leffler function, Riemann-Liouville fractional $h$-difference, oscillation.
Abstract:
      In this paper we study the half order nabla fractional difference equation $ _{\rho(a)}\nabla^{0.5}_{h}x(t)=cx(t), ~ t\in(h\N)_{a+h},$ where $_{\rho(a)}\nabla^{0.5}_hx(t)$ denotes the Riemann-Liouville nabla half order $h$-difference of $x(t)$. We will establish the asymptotic behavior of the solutions of this equation satisfying $x(a)=A>0$ for various values of the constant $c$.
PDF      Download reader