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DYNAMICS OF A STOCHASTIC THREE
SPECIES PREY-PREDATOR MODEL WITH

INTRAGUILD PREDATION∗

Rong Liu1 and Guirong Liu2,†

Abstract Intraguild predation is ubiquitous in many ecological communities.
This paper is concerned with a stochastic three species prey-predator model
with intraguild predation. The model involves a prey, an intermediate predator
which preys on only prey and an omnivorous top predator which preys on
both prey and intermediate predator. First, we show the existence of a unique
positive global solution of the model. Then we mainly establish the sufficient
conditions for the extinction and persistence in the mean of each population.
Moreover, we show that the model is stable in distribution. Finally, some
numerical simulations are given to illustrate the main results.

Keywords Stochastic food-web model, predator-prey, intraguild predation,
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1. Introduction

The dynamic relationship between predators and their preys has been universal in
mathematical ecology (see [10, 23]). In recent years, omnivory, which is defined as
feeding on more than one trophic level in food chain model, has received signifi-
cant importance in ecology (see [1, 3, 5]). Intraguild predation is a special kind of
omnivory, which is ubiquitous in many ecological communities (see [4]). As can
be seen in [22], the three species food chain model with intraguild predation in-
volves a resource, an intermediate predator which feeds upon only prey and a top
predator which feeds upon both prey and intermediate predator. In [5], the authors
investigated the following three species food web model

dx1(t)
dt = x1(t) [r1 − a11x1(t)− a12x2(t)− a13x3(t)] ,

dx2(t)
dt = x2(t) [−r2 + a21x1(t)− a23x3(t)] ,

dx3(t)
dt = x3(t) [−r3 + a31x1(t) + a32x2(t)] ,

(1.1)
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where x1, x2, and x3 denote the sizes of prey, intermediate preadtor, and omnivorous
top predator, respectively. r1 is the growth rate of prey, ri is the death rate of species
xi (i = 2, 3). a11 is the intra-specific competition rate of prey. a12, a13 and a23

are the capture rates; a21, a31 and a32 denote the efficiency of food conversion. All
coefficients are positive constants.

On the other hand, in the real world, population systems are always affected
by the environmental noise. Recently, many authors have paid their attention to
stochastic prey-predator models with white noise and revealed how the noise affect
the population systems. To name a few, see [6–9, 11–17, 21] and the references
therein. In [20], the authors investigated the stationary distribution and global
asymptotic stability of the following stochastic three species prey-predator model
with intraguild predation

dx1(t) = x1(t) [r1 − a11x1(t)− a12x2(t)− a13x3(t)] dt+ σ1x1(t)dw1(t),

dx2(t) = x2(t) [−r2 + a21x1(t)− a22x2(t)− a23x3(t)] dt+ σ2x2(t)dw2(t),

dx3(t) = x3(t) [−r3 + a31x1(t) + a32x2(t)− a33x3(t)] dt+ σ3x3(t)dw3(t),

(1.2)

with initial value (x1(0), x2(0), x3(0)) = (x10, x20, x30) ∈ R3
+ = {(x1, x2, x3) ∈ R3 :

xi > 0, i = 1, 2, 3}. All meanings of the parameters are exact to or similar as those
for (1.1) except the following. Here aii > 0 is the intra-specific rate of species xi (i =
2, 3). w(t) = {w1(t), w2(t), w3(t) : t ≥ 0} represents the three-dimensional standard
Brownian motion defined on a compete filtered probability space (Ω,F , {Ft}t≥0,P)
satisfying the usual conditions. σ2

i represents the intensity of noise wi(t), i = 1, 2, 3.
In [20], the authors only discussed the stationary distribution and global asymp-

totic stability of stochastic model (1.2). However, in this paper, we investigate the
persistence, extinction and stability in distribution of the stochastic model (1.2).
The complexity of model (1.2) is caused by the omnivorous top predator preying
on prey and the intermediate predator. This also makes the analysis of model (1.2)
more difficult than in [8, 12].

2. Preliminary

In this section, we give some useful preliminaries for the rest of the paper. Obviously,
the corresponding deterministic model of (1.2) is

dx1(t)
dt = x1(t) [r1 − a11x1(t)− a12x2(t)− a13x3(t)] ,

dx2(t)
dt = x2(t) [−r2 + a21x1(t)− a22x2(t)− a23x3(t)] ,

dx3(t)
dt = x3(t) [−r3 + a31x1(t) + a32x2(t)− a33x3(t)] ,

(2.1)

with initial value x1(0) = x10, x2(0) = x20, x3(0) = x30. Denote

D =

∣∣∣∣∣∣∣∣∣
a11 a12 a13

−a21 a22 a23

−a31 −a32 a33

∣∣∣∣∣∣∣∣∣ ,
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D̃1 =

∣∣∣∣∣∣∣∣∣
r1 a12 a13

−r2 a22 a23

−r3 −a32 a33

∣∣∣∣∣∣∣∣∣ , D̃2 =

∣∣∣∣∣∣∣∣∣
a11 r1 a13

−a21 −r2 a23

−a31 −r3 a33

∣∣∣∣∣∣∣∣∣ , D̃3 =

∣∣∣∣∣∣∣∣∣
a11 a12 r1

−a21 a22 −r2

−a31 −a32 −r3

∣∣∣∣∣∣∣∣∣ .

D > 0, D̃i > 0 (i = 1, 2, 3) imply that all the populations in model (2.1) could coex-

ist. Thus, model (2.1) has one interior equilibrium point E∗ =
(
D̃1

D , D̃2

D , D̃3

D

)
. Model

(2.1) has one trivial equilibrium point E0 = (0, 0, 0) and one axial equilibrium point
E1 =

(
r1
a11
, 0, 0

)
irrespective of any parametric restriction. Two boundary equilibria

E2 =
(
a33r1+a13r3
a11a33+a13a31

, 0, a31r1−a11r3
a11a33+a13a31

)
and E3 =

(
a22r1+a12r2
a11a22+a12a21

, a21r1−a11r2
a11a22+a12a21

, 0
)

exist
when a31r1 − a11r3 > 0 and a21r1 − a11r2 > 0 hold respectively.

Now we show that model (1.2) has a unique global positive solution. For the
sake of simplification, we denote

R = (−∞,+∞), 〈u(t)〉 =
1

t

∫ t

0

u(s)ds, κ1 = r1 −
σ2

1

2
, κi = ri +

σ2
i

2
(i = 2, 3).

Lemma 2.1. For any initial value (x10, x20, x30) ∈ R3
+, model (1.2) has a unique

solution (x1(t), x2(t), x3(t)) defined on t ≥ 0 and the solution will remain in R3
+

with probability one. Moreover, for p > 0, if a22 > a21 and a33 > a31 + a32 there is
a constant K = K(p) > 0 such that the solution of model (1.2) satisfies

lim sup
t→∞

E
[
xpi (t)

]
≤ K, i = 1, 2, 3. (2.2)

Proof. Consider the following system
dX1(t) =

[
κ1 − a11e

X1(t) − a12e
X2(t) − a13e

X3(t)
]

dt+ σ1dw1(t),

dX2(t) =
[
−κ2 + a21e

X1(t) − a22e
X2(t) − a23e

X3(t)
]

dt+ σ2dw2(t),

dX3(t) =
[
−κ3 + a31e

X1(t) + a32e
X2(t) − a33e

X3(t)
]

dt+ σ3dw3(t),

(2.3)

with initial value (X1(0), X2(0), X3(0)) = (lnx10, lnx20, lnx30). From [20], it follows
that the coefficients of (2.3) are locally Lipschitz continuous. Thus, there is a
unique maximal local solution (X1(t), X2(t), X3(t)) of (2.3) for t ∈ [0, τe). Let
xi(t) = eXi(t) (i = 1, 2, 3). Using Itô formula, it follows that (x1(t), x2(t), x3(t)) =
(eX1(t), eX2(t), eX3(t)) is the unique positive local solution of (1.2) with initial value
(x10, x20, x30) for t ∈ [0, τe).

Next, we show that (X1(t), X2(t), X3(t)) is a global solution of (2.3), that is
τe =∞. Consider the following stochastic differential system

dΦ1(t) = Φ1(t)
[
r1 − a11Φ1(t)

]
dt+ σ1Φ1(t)dw1(t),

dΦ2(t) = Φ2(t)
[
− r2 + a21Φ1(t)− a22Φ2(t)

]
dt+ σ2Φ2(t)dw2(t),

dΦ3(t) = Φ3(t)
[
− r3 + a31Φ1(t) + a32Φ2(t)− a33Φ3(t)

]
dt+ σ3Φ3(t)dw3(t),

(2.4)
with initial value (Φ1(0),Φ2(0),Φ3(0)) = (x10, x20, x30) ∈ R3

+. Thanks to Lemma
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4.2 in [2], system (2.4) can be explicitly solved as follow

Φ1(t) =
exp
{
κ1t+σ1w1(t)

}
1
x10

+a11
∫ t
0

exp
{
κ1s+σ1w1(s)

}
ds
,

Φ2(t) =
exp
{
−κ2t+σ2w2(t)+a21

∫ t
0

Φ1(s)ds
}

1
x20

+a22
∫ t
0

exp
{
−κ2s+σ2w2(s)+a21

∫ s
0

Φ1(τ)dτ
}

ds
,

Φ3(t) =
exp
{
−κ3t+σ3w3(t)+a31

∫ t
0

Φ1(s)ds+a32
∫ t
0

Φ2(s)ds
}

1
x30

+a33
∫ t
0

exp
{
−κ3s+σ3w3(s)+a31

∫ s
0

Φ1(τ)dτ+a32
∫ s
0

Φ2(τ)dτ
}

ds
.

Further, construct the following stochastic differential system
dφ1(t) = φ1(t)

[
r1 − a11φ1(t)− a12Φ2(t)− a13Φ3(t)

]
dt+ σ1φ1(t)dw1(t),

dφ2(t) = φ2(t)
[
− r2 + a21φ1(t)− a22φ2(t)− a23Φ3(t)

]
dt+ σ2φ2(t)dw2(t),

dφ3(t) = φ3(t)
[
− r3 + a31φ1(t) + a32φ2(t)− a33φ3(t)

]
dt+ σ3φ3(t)dw3(t),

(2.5)
with initial value (φ1(0), φ2(0), φ3(0)) = (x10, x20, x30) ∈ R3

+. Similarly,

φ1(t) =
exp
{
κ1t+σ1w1(t)−a12

∫ t
0

Φ2(s)ds−a13
∫ t
0

Φ3(s)ds
}

1
x10

+a11
∫ t
0

exp
{
κ1s+σ1w1(s)−a12

∫ s
0

Φ2(τ)dτ−a13
∫ s
0

Φ3(τ)dτ
}

ds
,

φ2(t) =
exp
{
−κ2t+σ2w2(t)+a21

∫ t
0
φ1(s)ds−a23

∫ t
0

Φ3(s)ds
}

1
x20

+a22
∫ t
0

exp
{
−κ2s+σ2w2(s)+a21

∫ s
0
φ1(τ)dτ−a23

∫ s
0

Φ3(τ)dτ
}

ds
,

φ3(t) =
exp
{
−κ3t+σ3w3(t)+a31

∫ t
0
φ1(s)ds+a32

∫ t
0
φ2(s)ds

}
1
x30

+a33
∫ t
0

exp
{
−κ3s+σ3w3(s)+a31

∫ s
0
φ1(τ)dτ+a32

∫ s
0
φ2(τ)dτ

}
ds
.

Note that the local solution (x1(t), x2(t), x3(t)) is positive on [0, τe). Then, from
the stochastic comparison theorem (see [18]), it follows that for t ∈ [0, τe),

0 < φi(t) ≤ xi(t) ≤ Φi(t) a.s., i = 1, 2, 3.

Thus, for t ∈ [0, τe),

lnφi(t) ≤ Xi(t) ≤ ln Φi(t) a.s., i = 1, 2, 3.

Since lnφi(t) and ln Φi(t) (i = 1, 2, 3) exist for every t ≥ 0, it follows that τe =∞.
Thus, for any (X1(0), X2(0), X3(0)) = (lnx10, lnx20, lnx30) ∈ R3, system (2.3) has
a unique global solution (X1(t), X2(t), X3(t)) on [0,∞) a.s. Therefore, for any
initial value (x10, x20, x30) ∈ R3

+, model (1.2) has a unique global positive solu-

tion (x1(t), x2(t), x3(t)) = (eX1(t), eX2(t), eX3(t)) on [0,∞) a.s. Moreover, the above
analysis shows that for any t ∈ [0,∞)

0 < φi(t) ≤ xi(t) ≤ Φi(t) a.s., i = 1, 2, 3. (2.6)

The proof of (2.2) is standard and hence is omitted (see [20]). Thus, the proof is
complete.

Lemma 2.2 (see [24]). Assume u ∈ C(Ω × [0,+∞),R+), G ∈ C(Ω × [0,+∞),R)

and limt→∞
G(t)
t = 0 a.s.
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(I) If there are %0 > 0, T > 0 and % satisfying

lnu(t) ≤ %t− %0

∫ t

0

u(s)ds+G(t) a.s., t ≥ T,

then 
lim sup
t→∞

〈u(t)〉 ≤ %
%0

a.s., if % > 0,

lim
t→∞
〈u(t)〉 = 0 a.s., if % = 0,

lim
t→∞

u(t) = 0 a.s., if % < 0.

(II) If there exist % > 0, %0 > 0 and T > 0 satisfying

lnu(t) ≥ %t− %0

∫ t

0

u(s)ds+G(t) a.s., t ≥ T,

then lim inft→∞〈u(t)〉 ≥ %
%0

a.s.

Lemma 2.3 (see [7]). Consider one-dimensional stochastic differential equation

dx(t) = x(t)
[
a− bx(t)

]
dt+ σx(t)dw(t), (2.7)

where a > 0, b > 0, σ > 0, and w(t) is standard Brownian motion. For any x0 > 0,

let x(t) be the solution of (2.7) with initial value x0. If a− σ2

2 > 0, then

lim
t→∞

lnx(t)

t
= 0, lim

t→∞
〈x(t)〉 =

a− σ2

2

b
a.s.

Assumption 1. a21κ1−a11κ2 > 0, a31a22κ1 +a32a21κ1−a32a11κ2−a11a22κ3 > 0.

From Assumption 1, it is easy to see that κ1 > 0.

Lemma 2.4. Let (Φ1(t),Φ2(t),Φ3(t)) be the solution of (2.4) with any initial value
(x10, x20, x30). If Assumption 1 is satisfied, then

lim
t→∞

ln Φi(t)

t
= 0, lim

t→∞
〈Φi(t)〉 = Mi a.s., i = 1, 2, 3,

where

M1 =
κ1

a11
, M2 =

a21κ1 − a11κ2

a11a22
,

M3 =
a31a22κ1 + a32a21κ1 − a32a11κ2 − a11a22κ3

a11a22a33
.

Proof. From Lemma 2.3 and Assumption 1, it follows that

lim
t→∞

ln Φ1(t)

t
= 0, lim

t→∞
〈Φ1(t)〉 =

κ1

a11
= M1 a.s. (2.8)

According to Itô formula, we have

ln Φ2(t) = lnx20 − κ2t+ a21

∫ t

0

Φ1(s)ds− a22

∫ t

0

Φ2(s)ds+ σ2w2(t). (2.9)
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Set H1(t) = lnx20 − κ2t+ a21

∫ t
0

Φ1(s)ds. Note that

lim
t→∞

H1(t)

t
=
a21κ1 − a11κ2

a11
> 0 a.s.

Thus, with Assumption 1, for any 0 < ε < a21κ1−a11κ2

a11
, there is a constant T > 0

such that H1(t) <
(
a21κ1−a11κ2

a11
+ ε
)
t and H1(t) >

(
a21κ1−a11κ2

a11
− ε
)
t for any t ≥ T .

Therefore, from (2.9), for any t ≥ T ,

ln Φ2(t) ≤
(
a21κ1 − a11κ2

a11
+ ε

)
t− a22

∫ t

0

Φ2(s)d + σ2w2(t).

ln Φ2(t) ≥
(
a21κ1 − a11κ2

a11
− ε
)
t− a22

∫ t

0

Φ2(s)ds+ σ2w2(t).

Thus, from Lemma 2.2, Assumption 1 and arbitrariness of ε,

lim inf
t→∞

〈Φ2(t)〉 ≥ a21κ1 − a11κ2

a11a22
= M2 a.s.,

lim sup
t→∞

〈Φ2(t)〉 ≤ a21κ1 − a11κ2

a11a22
= M2 a.s.

That is,

lim
t→∞
〈Φ2(t)〉 = M2 a.s. (2.10)

From (2.8)–(2.10),

lim
t→∞

ln Φ2(t)

t
= lim
t→∞

{
− κ2 + a21〈Φ1(t)〉 − a22〈Φ2(t)〉+

lnx20 + σ2w2(t)

t

}
= 0 a.s.

Similarly, according to Itô formula, we have

ln Φ3(t) =H2(t)− a33

∫ t

0

Φ3(s)ds+ σ3w3(t), (2.11)

where H2(t) = lnx30 − κ3t+ a31

∫ t
0

Φ1(s)ds+ a32

∫ t
0

Φ2(s)ds. Thus,

lim
t→∞

H2(t)

t
=
a31a22κ1 + a32a21κ1 − a32a11κ2 − a11a22κ3

a11a22
> 0 a.s.

Thus, for any 0 < ε < a31a22κ1+a32a21κ1−a32a11κ2−a11a22κ3

a11a22
, there is a constant

T > 0 such that H2(t) <
(
a31a22κ1+a32a21κ1−a32a11κ2−a11a22κ3

a11a22
+ ε
)
t and H2(t) >(

a31a22κ1+a32a21κ1−a32a11κ2−a11a22κ3

a11a22
− ε
)
t for any t ≥ T . Therefore, from (2.11), for

any t ≥ T ,

ln Φ3(t) ≤
(
a31a22κ1 + a32a21κ1 − a32a11κ2 − a11a22κ3

a11a22
+ ε

)
t

− a33

∫ t

0

Φ3(s)ds+ σ3w3(t).

ln Φ3(t) ≥
(
a31a22κ1 + a32a21κ1 − a32a11κ2 − a11a22κ3

a11a22
− ε
)
t
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− a33

∫ t

0

Φ3(s)ds+ σ3w3(t).

Thus, from Lemma 2.2, Assumption 1 and the arbitrariness of ε, we get

lim
t→∞
〈Φ3(t)〉 =

a31a22κ1 + a32a21κ1 − a32a11κ2 − a11a22κ3

a11a22a33
= M3 a.s. (2.12)

From (2.8), (2.10)–(2.12),

lim
t→∞

ln Φ3(t)

t
= 0 a.s.

The proof is therefore complete.

From the proof of Lemma 2.4 and (2.6), we have the following result.

Corollary 2.1. Let (Φ1(t),Φ2(t),Φ3(t)) and (x1(t), x2(t), x3(t)) be the solution of
system (2.4) and model (1.2) with initial value (x10, x20, x30) ∈ R3

+, respectively.
(i) If κ1 > 0, then

lim
t→∞

ln Φ1(t)

t
= 0, lim

t→∞
〈Φ1(t)〉 = M1, lim sup

t→∞

lnx1(t)

t
≤ 0 a.s.

(ii) If a21κ1 − a11κ2 > 0, then

lim
t→∞

ln Φi(t)

t
= 0, lim

t→∞
〈Φi(t)〉 = Mi, lim sup

t→∞

lnxi(t)

t
≤ 0 a.s., i = 1, 2.

(iii) If Assumption 1 is satisfied, then

lim sup
t→∞

lnxi(t)

t
≤ 0 a.s., i = 1, 2, 3.

Now, we introduce the following assumption.

Assumption 2. a11 > a12 + a13, a22 > a21 + a23, a33 > a31 + a32.

Form Theorem 13 in [20], we have the following result.

Lemma 2.5. Let Assumption 2 hold, then (1.2) is globally attractive. That is, for
any x0 = (x10, x20, x30) and x̃0 = (x̃10, x̃20, x̃30) ∈ R3

+, let x(t) = (x1(t), x2(t), x3(t))
and x̃(t) = (x̃1(t), x̃2(t), x̃3(t)) be the solutions of model (1.2) with x0 and x̃0, re-
spectively. If Assumption 2 is satisfied, then

lim
t→∞

E
∣∣xi(t)− x̃i(t)∣∣ = 0 i = 1, 2, 3. (2.13)

3. Main results

Denote

D1 =

∣∣∣∣∣∣∣∣∣
κ1 a12 a13

−κ2 a22 a23

−κ3 −a32 a33

∣∣∣∣∣∣∣∣∣ , D2 =

∣∣∣∣∣∣∣∣∣
a11 κ1 a13

−a21 −κ2 a23

−a31 −κ3 a33

∣∣∣∣∣∣∣∣∣ , D3 =

∣∣∣∣∣∣∣∣∣
a11 a12 κ1

−a21 a22 −κ2

−a31 −a32 −κ3

∣∣∣∣∣∣∣∣∣ .
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Let Aij be the algebraic cofactor of the ij−th element of D. Obviously, A11 > 0,
A21 < 0, A22 > 0, A32 < 0, A13 > 0, A33 > 0.

Now, we introduce the following assumption.

Assumption 3. D > 0, Di > 0 (i = 1, 2, 3), A23 ≥ 0, A31 ≤ 0, A12 ≤ 0.

Theorem 3.1. For any (x10, x20, x30) ∈ R3
+, let (x1(t), x2(t), x3(t)) be the solution

of model (1.2) with initial value (x10, x20, x30).
(i) If κ1 < 0, then

lim
t→∞

xi(t) = 0 a.s., i = 1, 2, 3.

(ii) If κ1 > 0, a21κ1 − a11κ2 < 0 and a31κ1 − a11κ3 < 0, then

lim
t→∞
〈x1(t)〉 =

κ1

a11
, lim

t→∞
x2(t) = 0, lim

t→∞
x3(t) = 0 a.s.

(iii) If a21κ1 − a11κ2 < 0 and a31κ1 − a11κ3 > 0, then

lim
t→∞
〈x1(t)〉 =

a33κ1 + a13κ3

a11a33 + a13a31
, lim
t→∞

x2(t) = 0, lim
t→∞
〈x3(t)〉 =

a31κ1 − a11κ3

a11a33 + a13a31
a.s.

(iv) If a21κ1 − a11κ2 > 0 and a31a22κ1 + a32a21κ1 − a32a11κ2 − a11a22κ3 < 0,
then

lim
t→∞
〈x1(t)〉 =

a22κ1 + a12κ2

a11a22 + a12a21
, lim
t→∞
〈x2(t)〉 =

a21κ1 − a11κ2

a11a22 + a12a21
, lim
t→∞

x3(t) = 0 a.s.

(v) If Assumptions 1 and 3 hold, then

lim
t→∞
〈xi(t)〉 =

Di

D
a.s., i = 1, 2, 3.

Proof. Applying the Itô formula to model (1.2) results in

lnx1(t)

t
=κ1 − a11〈x1(t)〉 − a12〈x2(t)〉 − a13〈x3(t)〉+

σ1w1(t)

t
+

lnx10

t
, (3.1)

lnx2(t)

t
=− κ2 + a21〈x1(t)〉 − a22〈x2(t)〉 − a23〈x3(t)〉+

σ2w2(t)

t
+

lnx20

t
, (3.2)

lnx3(t)

t
=− κ3 + a31〈x1(t)〉+ a32〈x2(t)〉 − a33〈x3(t)〉+

σ3w3(t)

t
+

lnx30

t
. (3.3)

Now let us prove (i) firstly. From (3.1), it follows that

lnx1(t) ≤ κ1t− a11

∫ t

0

x1(s)ds+ σ1w1(t) + lnx10.

This, together with κ1 < 0 and Lemma 2.2, yields

lim
t→∞

x1(t) = 0 a.s.

Applying L’Hospital’s rule, we have limt→∞〈x1(t)〉 = 0 a.s. Thus,

lim
t→∞

1

t

[
a21

∫ t

0

x1(s)ds+ σ2w2(t) + lnx20

]
= 0 a.s. (3.4)
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From (3.2), we have

lnx2(t) ≤− κ2t− a22

∫ t

0

x2(s)ds+

[
a21

∫ t

0

x1(s)ds+ σ2w2(t) + lnx20

]
.

Thus, from −κ2 < 0, (3.4) and Lemma 2.2, it follows that

lim
t→∞

x2(t) = 0 a.s.

Applying L’Hospital’s rule, we also have limt→∞〈x2(t)〉 = 0 a.s. Denote H3(t) =

a31

∫ t
0
x1(s)ds+ a32

∫ t
0
x2(s)ds+ σ3w3(t) + lnx30. Thus,

lim
t→∞

H3(t)

t
= 0 a.s. (3.5)

It follows from (3.3) that

lnx3(t) = −κ3t− a33

∫ t

0

x3(s)ds+H3(t),

which, together with κ3 > 0, Lemma 2.2 and (3.5), yields

lim
t→∞

x3(t) = 0 a.s.

Hence, (i) holds.
Now, let us prove (ii). Note that κ1 > 0. Thus, from (2.9), we have

ln Φ2(t)

t
≤ −κ2 + a21〈Φ1(t)〉+

lnx20

t
+
σ2w2(t)

t
.

From Corollary 2.1, it follows that

lim sup
t→∞

ln Φ2(t)

t
≤− κ2 + a21 lim

t→∞
〈Φ1(t)〉 =

a21κ1 − a11κ2

a11
< 0.

This means limt→∞ Φ2(t) = 0, a.s. Applying L’Hospital’s rule, we have

lim
t→∞
〈Φ2(t)〉 = 0 a.s. (3.6)

Similarly, from (2.11), we have

ln Φ3(t)

t
≤− κ3 + a31〈Φ1(t)〉+ a32〈Φ2(t)〉+

lnx30

t
+
σ3w3(t)

t
.

Thus, from (3.6) and Corollary 2.1, it follows that

lim sup
t→∞

ln Φ3(t)

t
≤− κ3 + a31 lim

t→∞
〈Φ1(t)〉+ a32 lim

t→∞
〈Φ2(t)〉

=
a31κ1 − a11κ3

a11
< 0.

This means limt→∞ Φ3(t) = 0 a.s. Therefore, from (2.6), we have

lim
t→∞

xi(t) = 0 a.s., i = 2, 3.
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Applying L’Hospital’s rule, it follows that

lim
t→∞
〈xi(t)〉 = 0 a.s., i = 2, 3.

Denote H4(t) = −a12

∫ t
0
x2(s)ds− a13

∫ t
0
x3(s)ds+ σ1w1(t) + lnx10. Thus,

lim
t→∞

H4(t)

t
= 0 a.s. (3.7)

It follows from (3.1) that

lnx1(t) = κ1t− a11

∫ t

0

x1(s)ds+H4(t),

which, together with (3.7) and Lemma 2.2, yields

lim
t→∞
〈x1(t)〉 =

κ1

a11
a.s.

Hence, (ii) holds.
Next, we prove (iii). It follows from a31κ1 − a11κ3 > 0 that κ1 > 0. From

a21κ1 − a11κ2 < 0 and the proof of (ii), we have

lim
t→∞

x2(t) = 0, lim
t→∞
〈x2(t)〉 = 0 a.s. (3.8)

Computing (3.1)× a31 + (3.3)× a11, one can derive that

a11
lnx3(t)

t
=(a31κ1 − a11κ3)− (a11a33 + a13a31)〈x3(t)〉+H5(t)− a31

lnx1(t)

t
,

where H5(t) = (a11a32−a12a31)〈x2(t)〉+a31

(σ1w1(t)
t + ln x10

t

)
+a11

(σ3w3(t)
t + ln x30

t

)
.

From (3.8), it follows that limt→∞H5(t) = 0 a.s. Moreover, from Corollary 2.1, we

have lim supt→∞
ln x1(t)

t ≤ 0 a.s. Thus, for any 0 < ε < a31κ1 − a11κ3, there is a

constant T > 0 such that a31
ln x1(t)

t < ε for t ≥ T . Thus, for any t ≥ T ,

a11
lnx3(t)

t
≥(a31κ1 − a11κ3 − ε)− (a11a33 + a13a31)〈x3(t)〉+H5(t).

This, together with Lemma 2.2 and the arbitrariness of ε, yields

lim inf
t→∞

〈x3(t)〉 ≥ a31κ1 − a11κ3

a11a33 + a13a31
a.s. (3.9)

Namely, for every 0 < ε < a31κ1−a11κ3

a11a33+a13a31
, there is a constant T > 0 such that

a13〈x3(t)〉 ≥ a13
a31κ1−a11κ3

a11a33+a13a31
− ε for t ≥ T . Thus, for any t ≥ T , from (3.1),

lnx1(t)

t
≤a11(a33κ1 + a13κ3)

a11a33 + a13a31
+ ε− a11〈x1(t)〉+

σ1w1(t)

t
+

lnx10

t
.

Applying Lemma 2.2 and the arbitrariness of ε, it follows that

lim sup
t→∞

〈x1(t)〉 ≤ a33κ1 + a13κ3

a11a33 + a13a31
a.s. (3.10)
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This, together with (3.8), yields that for any ε > 0, there is a constant T > 0 such
that a32〈x2(t)〉 < ε and a31〈x1(t)〉 < a31

a33κ1+a13κ3

a11a33+a13a31
+ ε for t ≥ T . Thus, for any

t ≥ T , from (3.3), it follows that

lnx3(t)

t
≤a33(a31κ1 − a11κ3)

a11a33 + a13a31
+ 2ε− a33〈x3(t)〉+

σ3w3(t)

t
+

lnx30

t
.

From Lemma 2.2 and the arbitrariness of ε, we have

lim sup
t→∞

〈x3(t)〉 ≤ a31κ1 − a11κ3

a11a33 + a13a31
a.s. (3.11)

This, together with (3.8), yields that for any 0 < ε < a11(a33κ1+a13κ3)
2(a11a33+a13a31) , there is a

positive constant T such that a12〈x2(t)〉 < ε and a13〈x3(t)〉 < a13
a31κ1−a11κ3

a11a33+a13a31
+ ε

for t ≥ T . Thus, for any t ≥ T , from (3.1), it follows that

lnx1(t)

t
≥a11(a33κ1 + a13κ3)

a11a33 + a13a31
− 2ε− a11〈x1(t)〉+

σ1w1(t)

t
+

lnx10

t
.

Applying Lemma 2.2 and the arbitrariness of ε, we have

lim inf
t→∞

〈x1(t)〉 ≥ a33κ1 + a13κ3

a11a33 + a13a31
a.s. (3.12)

Therefore, from (3.9)–(3.12), it follows that

lim
t→∞
〈x1(t)〉 =

a33κ1 + a13κ3

a11a33 + a13a31
, lim

t→∞
〈x3(t)〉 =

a31κ1 − a11κ3

a11a33 + a13a31
a.s.

Hence, (iii) holds. The proof of (iv) is similar to (iii), and hence is omitted.
At last, let us prove (v). Denote

Fi(t) = − lnxi(t)

t
+
σiwi(t)

t
+

lnxi0
t

, i = 1, 2, 3.

Then, from (3.1)–(3.3), it follows that

〈x1(t)〉 =
D1 +A11F1(t) +A21F2(t) +A31F3(t)

D
, (3.13)

〈x2(t)〉 =
D2 +A12F1(t) +A22F2(t) +A32F3(t)

D
, (3.14)

〈x3(t)〉 =
D3 +A13F1(t) +A23F2(t) +A33F3(t)

D
. (3.15)

It follows from (3.15) that

A33

D

lnx3(t)

t
=
D3

D
− 〈x3(t)〉 − A13

D

lnx1(t)

t
− A23

D

lnx2(t)

t
+H6(t),

where H6(t) = A13

D

(
ln x10

t + σ1w1(t)
t

)
+ A23

D

(
ln x20

t + σ2w2(t)
t

)
+ A33

D

(
ln x30

t + σ3w3(t)
t

)
.

Clearly, limt→∞H6(t) = 0 a.s. Since Assumption 1 holds, Corollary 2.1 implies

lim supt→∞
ln xi(t)

t ≤ 0 a.s., i = 1, 2, 3. Note that A13 > 0 and A23 ≥ 0. Thus, for



92 R. Liu & G. Liu

any 0 < ε < D3

D , there is a constant T > 0 such that A13

D
ln x1(t)

t + A23

D
ln x2(t)

t < ε for
t ≥ T . Thus, for any t ≥ T ,

A33

D

lnx3(t)

t
≥ D3

D
− ε− 〈x3(t)〉+H6(t).

This, together with Lemma 2.2 and the arbitrariness of ε, yields

lim inf
t→∞

〈x3(t)〉 ≥ D3

D
a.s. (3.16)

From (3.13), it follows that

A11

D

lnx1(t)

t
=
D1

D
− 〈x1(t)〉 − A21

D

lnx2(t)

t
− A31

D

lnx3(t)

t
+H7(t).

Here H7(t) = A11

D

(
ln x10

t + σ1w1(t)
t

)
+ A21

D

(
ln x20

t + σ2w2(t)
t

)
+ A31

D

(
ln x30

t + σ3w3(t)
t

)
.

Clearly, limt→∞H7(t) = 0 a.s. Note that A21 < 0 and A31 ≤ 0. From Corollary

2.1, for any ε > 0, there is a constant T > 0 such that −A21

D
ln x2(t)

t − A31

D
ln x3(t)

t < ε
for t ≥ T . Thus, for any t ≥ T ,

A11

D

lnx1(t)

t
≤ D1

D
+ ε− 〈x1(t)〉+H7(t).

This, together with Lemma 2.2 and the arbitrariness of ε, yields

lim sup
t→∞

〈x1(t)〉 ≤ D1

D
a.s. (3.17)

Similarly, from A12 ≤ 0 and A32 < 0, we also have

lim sup
t→∞

〈x2(t)〉 ≤ D2

D
a.s. (3.18)

Namely, for every ε > 0, there is a constant T > 0 such that a31〈x1(t)〉 ≤ a31
D1

D + ε

and a32〈x2(t)〉 ≤ a32
D2

D + ε for t ≥ T . Thus, for any t ≥ T , from (3.3),

lnx3(t)

t
≤ a33

D3

D
+ 2ε− a33〈x3(t)〉+

σ3w3(t)

t
+

lnx30

t
.

Applying Lemma 2.2 and the arbitrariness of ε, it follows that

lim sup
t→∞

〈x3(t)〉 ≤ D3

D
a.s. (3.19)

From (3.18) and (3.19), for any 0 < ε < a11D1

2D , there is a constant T > 0 such that

a12〈x2(t)〉 ≤ a12
D2

D + ε and a13〈x3(t)〉 ≤ a13
D3

D + ε for t ≥ T . Thus, for any t ≥ T ,
from (3.1),

lnx1(t)

t
≥ a11

D1

D
− 2ε− a11〈x1(t)〉+

σ1w1(t)

t
+

lnx10

t
.

Applying Lemma 2.2 and the arbitrariness of ε, it follows that

lim inf
t→∞

〈x1(t)〉 ≥ D1

D
a.s. (3.20)
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From (3.19) and (3.20), for any 0 < ε < a22D2

2D , there is a constant T > 0 such that

a21〈x1(t)〉 ≥ a21
D1

D − ε and a23〈x3(t)〉 ≤ a23
D3

D + ε for t ≥ T . Thus, for any t ≥ T ,
from (3.2),

lnx2(t)

t
≥ a22

D2

D
− 2ε− a22〈x2(t)〉+

σ2w2(t)

t
+

lnx20

t
.

Applying Lemma 2.2 and the arbitrariness of ε, it follows that

lim inf
t→∞

〈x2(t)〉 ≥ D2

D
a.s. (3.21)

From (3.16)–(3.21), we have the result. Hence, (v) holds.

Theorem 3.2. If Assumption 2 holds, then model (1.2) is stable in distribution.

Proof. Let A ∈ B(R3
+), and x(t;x0) be the solution of (1.2) corresponding to

x(0) = x0 ∈ R3
+. Let p(t, x0, ·) be the transition probability of x(t;x0) and

P (t, x0, A) = P{x(t;x0) ∈ A} =

∫
A

p(t, x0,dη).

Let P(R3
+) be the family of probability measures on the measurable space (R3

+,B(R3
+)).

For P1, P2 ∈ P(R3
+), define the metric

dS(P1, P2) = sup
f∈S

∣∣∣∣ ∫
R3

+

f(s)P1(ds)−
∫
R3

+

f(s)P2(ds)

∣∣∣∣,
where

S =
{
f : R3

+ → R
∣∣∣|f(s1)− f(s2)| ≤ |s1 − s2| and |f(·)| ≤ 1 for s1, s2 ∈ R3

+

}
.

Thus, (P(R3
+),dS) is a complete metric space. For any x0 ∈ R3

+, f ∈ S and t, s > 0,

|Ef(x(t+ s;x0))− Ef(x(t;x0))| =
∣∣∣ ∫

R3
+

Ef(x(t; y0))p(s, x0,dy0)− Ef(x(t;x0))
∣∣∣

≤
∫
Bθ

∣∣Ef(x(t;x0))− Ef(x(t; y0))
∣∣p(s, x0,dy0)

+ 2P (s, x0, B̄θ), (3.22)

where θ > 0, x0 ∈ Bθ = {x ∈ R3
+ : 1

θ ≤ |x| ≤ θ} and B̄θ = R3
+ − Bθ. According to

Chebyshev’s inequality and Lemma 2.1, {p(t, x0,dη) : t ≥ 0} is tight. Thus, there
is a sufficiently large θ satisfying

P (s, x0, B̄θ) ≤
ε

4
, s > 0. (3.23)

From Lemma 2.5, for any y0 ∈ Bθ, there is T > 0 satisfying

E
∣∣x(t;x0)− x(t; y0)

∣∣ ≤ ε

2
, t > T.

For any f ∈ S and t > T , from the inequality |Ex| ≤ E|x|,∫
Bθ

∣∣Ef(x(t;x0))− Ef(x(t; y0))
∣∣p(s, x0,dy0)



94 R. Liu & G. Liu

≤
∫
Bθ

E
∣∣x(t;x0)− x(t; y0)

∣∣p(s, x0,dy0)

≤ ε

2

∫
Bθ

p(s, x0,dy0) ≤ ε

2
. (3.24)

From (3.22), (3.23), (3.24) and the arbitrariness of f , we derive immediately

dS(p(t+ s, x0, ·), p(t, x0, ·)) ≤ ε, for any t > T, s > 0.

In other words, for any x0 ∈ R3
+, {p(t, x0, ·) : t ≥ 0} is a Cauchy sequence in

(P(R3
+),dS). Hence {p(t, z0, ·) : t ≥ 0} is a Cauchy sequence in (P(R3

+),dS), where
z0 = (0.001, 0.001, 0.001). So, there is a unique ν(·) ∈ P(R3

+) satisfying

lim
t→∞

dS(p(t, z0, ·), ν(·)) = 0. (3.25)

By Lemma 2.5, we have

lim
t→∞

dS(p(t, x0, ·), p(t, z0, ·)) = 0. (3.26)

Further, from triangle inequality, (3.25) and (3.26), it follows that

lim sup
t→∞

dS(p(t, x0, ·), ν(·)) ≤ lim
t→∞

dS(p(t, x0, ·), p(t, z0, ·)) + lim
t→∞

dS(p(t, z0, ·), ν(·))

=0.

Hence, limt→∞ dS(p(t, x0, ·), ν(·)) = 0, which is the desired assertion.

Theorem 3.3. For any x0 ∈ R3
+, let x(t) be the solution of model (1.2) with initial

value x0. Under Assumption 2, we have the following results:
(i’) If κ1 < 0, then

lim
t→∞

xi(t) = 0 a.s., i = 1, 2, 3.

(ii’) If κ1 > 0, a21κ1 − a11κ2 < 0 and a31κ1 − a11κ3 < 0, then limt→∞ xi(t) = 0
a.s., i = 2, 3, and there is a unique ergodic invariant distribution µ1 such that the
distributions of x1(t) converge weakly to µ1 and

lim
t→∞
〈x1(t)〉 =

∫
R+

z1µ1(dz1) =
κ1

a11
a.s.

(iii’) If a21κ1 − a11κ2 < 0 and a31κ1 − a11κ3 > 0, then limt→∞ x2(t) = 0 a.s.,
and there is a unique ergodic invariant distribution µ2 such that the distributions of
(x1(t), x3(t)) converge weakly to µ2 and

lim
t→∞
〈x1(t)〉 =

∫
R2

+

z1µ2(dz1,dz3) =
a33κ1 + a13κ3

a11a33 + a13a31
a.s.,

lim
t→∞
〈x3(t)〉 =

∫
R2

+

z3µ2(dz1,dz3) =
a31κ1 − a11κ3

a11a33 + a13a31
a.s.

(iv’) If a21κ1 − a11κ2 > 0 and a31a22κ1 + a32a21κ1 − a32a11κ2 − a11a22κ3 < 0,
then limt→∞ x3(t) = 0 a.s., and there is a unique ergodic invariant distribution µ3

such that the distributions of (x1(t), x2(t)) converge weakly to µ3 and

lim
t→∞
〈x1(t)〉 =

∫
R2

+

z1µ3(dz1,dz2) =
a22κ1 + a12κ2

a11a22 + a12a21
a.s.,
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lim
t→∞
〈x2(t)〉 =

∫
R2

+

z1µ3(dz1,dz2) =
a21κ1 − a11κ2

a11a22 + a12a21
a.s.

(v’) If Assumptions 1 and 3 hold, then there is a unique ergodic invariant distri-
bution µ4 such that the distributions of solution (x1(t), x2(t), x3(t)) converge weakly
to µ4 and

lim
t→∞
〈xi(t)〉 =

∫
R3

+

ziµ4(dz1,dz2,dz3) =
Di

D
a.s., i = 1, 2, 3.

Proof. First of all, let us prove (v’). In view of (v) in Theorem 3.1, we have

lim
t→∞
〈xi(t)〉 =

Di

D
a.s., i = 1, 2, 3. (3.27)

At the same time, Theorem 3.2 means that model (1.2) is stable in distribution.
Then, there is a unique probability measure, denoted by µ4 such that p(t, x0, ·)
of (x1(t), x2(t), x3(t)) converges weakly to µ4. An application of Kolmogorov-
Chapman equation that µ4 is invariant. From Corollary 3.4.3 in [19], it follows
that µ4 is strong mixing, and hence µ4 is ergodic (see [19]). According to (3.3.2)
in [19] and (3.27), we obtain

lim
t→∞
〈xi(t)〉 =

∫
R3

+

ziµ4(dz1,dz2,dz3) =
Di

D
a.s., i = 1, 2, 3.

Now let us show (iv’). According to (iv) in Theorem 3.2,

lim
t→∞
〈x1(t)〉 =

a22κ1 + a12κ2

a11a22 + a12a21
, lim
t→∞
〈x2(t)〉 =

a21κ1 − a11κ2

a11a22 + a12a21
, lim
t→∞

x3(t) = 0 a.s.

Then model (1.2) reduces to the following predator-pery modeldx̂1(t) = x̂1(t) [r1 − a11x̂1(t)− a12x̂2(t)] dt+ σ1x̂1(t)dw1(t),

dx̂2(t) = x̂2(t) [−r2 + a21x̂1(t)− a22x̂2(t)] dt+ σ2x̂2(t)dw2(t),
(3.28)

with initial value x̂1(0) = x10, x̂2(0) = x20. Similar to the proof of (v’), there
is a unique ergodic invariant distribution denoted by µ3 such that the transition
probability of (x̂1(t), x̂2(t)) converges weakly to µ3. Note that limt→∞ x3(t) =
0 a.s. Thus, (x1(t), x2(t)) has the same asymptotic properties with the solution
(x̂1(t), x̂2(t)) of (3.28). This completes the proof of (iv’).

The proof of (iii’) and (ii’) are omitted for the same reason given above. By (i)
in Theorem 3.2, (i’) holds. The proof is therefore complete.

If a13 = a23 = a31 = a32 = a33 = r3 = σ3 ≡ 0, then model (1.2) can be degraded
into the following stochastic predator-prey modeldx1(t) = x1(t) [r1 − a11x1(t)− a12x2(t)] dt+ σ1x1(t)dw1(t),

dx2(t) = x2(t) [−r2 + a21x1(t)− a22x2(t)] dt+ σ2x2(t)dw2(t),
(3.29)

with initial value (x1(0), x2(0)) = (x10, x20) ∈ R2
+. For model (3.29), from the proof

of Theorem 3.1, we have the following result.
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Corollary 3.1. For any (x10, x20) ∈ R2
+, let (x1(t), x2(t)) be solution of (3.29) with

initial value (x10, x20).
(i) If κ1 < 0, then

lim
t→∞

xi(t) = 0 a.s., i = 1, 2.

(ii) If κ1 > 0 and a21κ1 − a11κ2 < 0, then

lim
t→∞
〈x1(t)〉 =

κ1

a11
, lim

t→∞
x2(t) = 0 a.s.

(iii) If a21κ1 − a11κ2 > 0, then

lim
t→∞
〈x1(t)〉 =

a22κ1 + a12κ2

a11a22 + a12a21
, lim

t→∞
〈x2(t)〉 =

a21κ1 − a11κ2

a11a22 + a12a21
a.s.

Remark 3.1. If τ1 = τ2 = 0 in model (SM) in [13], then Corollary 3.1 is consistent
with Theorem 1 in [13]. Moreover, if one considers a stochastic three species prey-
predator model with intraguild predation, from Theorem 3.1, the conditions for
population extinction and persistence will be more complicated.

Further, if a13 = a31 ≡ 0, then one can get the following stochastic food chain
model

dx1(t) = x1 [r1 − a11x1(t)− a12x2(t)] dt+ σ1x1(t)dw1(t),

dx2(t) = x2 [−r2 + a21x1(t)− a22x2(t)− a23x3(t)] dt+ σ2x2(t)dw2(t),

dx3(t) = x3 [−r3 + a32x2(t)− a33x3(t)] dt+ σ3x3(t)dw3(t),

(3.30)

with initial value (x1(0), x2(0), x3(0)) = (x10, x20, x30) ∈ R3
+. For model (3.30),

from the proof of Theorem 3.1, we have the following result.

Corollary 3.2. For any (x10, x20, x30) ∈ R3
+, let (x1(t), x2(t), x3(t)) be the solution

of model (3.30) with initial value (x10, x20, x30).
(i) If κ1 < 0, then

lim
t→∞

xi(t) = 0 a.s., i = 1, 2, 3.

(ii) If κ1 > 0 and a21κ1 − a11κ2 < 0, then

lim
t→∞
〈x1(t)〉 =

κ1

a11
, lim

t→∞
x2(t) = 0, lim

t→∞
x3(t) = 0 a.s.

(iii) If a21κ1 − a11κ2 > 0 and a32a21κ1 − a32a11κ2 − a11a22κ3 < 0, then

lim
t→∞
〈x1(t)〉 =

a22κ1 + a12κ2

a11a22 + a12a21
, lim
t→∞
〈x2(t)〉 =

a21κ1 − a11κ2

a11a22 + a12a21
, lim
t→∞

x3(t) = 0 a.s.

Remark 3.2. For model (3.30), it follows from Corollary 3.2 that the extinction of
predator x2 can lead to the extinction of predator x3. However, for model (1.2), it
follows from (iii) in Theorem 1 that under certain conditions, even if intermediate
predator x2 goes extinct, top predator x3 can be persistent in mean. Thus, omnivory
has great effects on the population dynamics.
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Remark 3.3. In [25], the authors investigated the stability in the mean of a s-
tochastic three species food chain model with general Lévy jumps. If ci(u) = 0
(i = 1, 2, 3), then we get stochastic model (3.30). Denote

E =

∣∣∣∣∣∣∣∣∣
a11 a12 0

−a21 a22 a23

0 −a32 a33

∣∣∣∣∣∣∣∣∣ ,

E1 =

∣∣∣∣∣∣∣∣∣
κ1 a12 0

−κ2 a22 a23

−κ3 −a32 a33

∣∣∣∣∣∣∣∣∣ , E2 =

∣∣∣∣∣∣∣∣∣
a11 κ1 0

−a21 −κ2 a23

0 −κ3 a33

∣∣∣∣∣∣∣∣∣ , E3 =

∣∣∣∣∣∣∣∣∣
a11 a12 κ1

−a21 a22 −κ2

0 −a32 −κ3

∣∣∣∣∣∣∣∣∣ .
From Theorem 3.1 in [25], if Ei > 0 (i = 1, 2, 3), then model (3.30) is globally stable
in the mean with probability one. That is, for any (x10, x20, x30) ∈ R3

+, the solution

(x1(t), x2(t), x3(t)) of model (3.30) satisfies limt→∞〈xi(t)〉 = Ei
E a.s., i = 1, 2, 3.

This is consistent with Theorem 3.1.

4. Numerical simulations

In this section, we make numerical simulations to illustrate our results. Consider
the following example

dx1(t) = x1(t) [0.6− 0.5x1 − 0.2x2 − 0.12x3] dt+ σ1x1(t)dw1(t),

dx2(t) = x2(t) [−0.01 + 0.1x1 − 0.35x2 − 0.16x3] dt+ σ2x2(t)dw2(t),

dx3(t) = x3(t) [−0.1 + 0.1x1 + 0.05x2 − 0.16x3] dt+ σ3x3(t)dw3(t),

(4.1)

with x10 = 0.8, x20 = 0.3, x30 = 0.1. It is easy to check that D = 0.0368,
D̃1 = 0.0398, D̃2 = 0.0083, D̃3 = 0.0044. Thus, the corresponding determination
model has interior equilibrium point E∗ = (1.0815, 0.2255, 0.1196) (see Figure 1).
Moreover, we have A23 = 0.005 > 0, A31 = −0.01 < 0 and A12 = 0.
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Figure 1. The solution (x1(t), x2(t), x3(t)) of (4.1) with σ2
1 = σ2

2 = σ2
3 = 0.

Now, we introduce some numerical results to illustrate Theorem 3.3.
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(i) In Figure 2, let σ2
1 = 1.3, σ2

2 = 0.002 and σ2
3 = 0.002. Then, κ1 = −0.05 < 0.

Thus, the condition of (i’) in Theorem 3.3 have been checked. From Theorem 3.3,

lim
t→∞

x1(t) = 0 a.s., i = 1, 2, 3.
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Figure 2. The solution (x1(t), x2(t), x3(t)) of (4.1) with σ2
1 = 1.3 and σ2

2 = σ2
3 = 0.002.

(ii) In Figure 3, choose σ2
1 = 0.05, σ2

2 = 0.4 and σ2
3 = 0.2. Then, κ1 = 0.575 > 0,

a21κ1 − a11κ2 = −0.0475 < 0 and a31κ1 − a11κ3 = −0.0925 < 0. That is, all
conditions of (ii’) in Theorem 3.3 have been checked. Thus,

lim
t→∞
〈x1(t)〉 = 1.15, lim

t→∞
x2(t) = 0 a.s., i = 2, 3.
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Figure 3. The solution (x1(t), x2(t), x3(t)) of (4.1) with σ2
1 = 0.05, σ2

2 = 0.4 and σ2
3 = 0.2 (a) paths

of x1(t), x2(t), x3(t) and 〈x1(t)〉; (b) probability density functions of x1(t) at t = 60000.

(iii) In Figure 4, let σ2
1 = 0.05, σ2

2 = 0.4 and σ2
3 = 0.002. Then, κ1 = 0.575 > 0,

a21κ1 − a11κ2 = −0.0475 < 0 and a31κ1 − a11κ3 = 0.0070 > 0. Thus, all conditions
of (iii’) in Theorem 3.3 have been checked. Therefore,

lim
t→∞
〈x1(t)〉 = 1.1315, lim

t→∞
x2(t) = 0, lim

t→∞
〈x3(t)〉 = 0.0761 a.s.

(iv) In Figure 5, set σ2
1 = 0.02, σ2

2 = 0.002 and σ2
3 = 0.2. Then, κ1 = 0.59 > 0,

a21κ1 − a11κ2 = 0.0535 > 0 and a31a22κ1 + a32a21κ1 − a32a11κ2 − a11a22κ3 =
−0.0117 < 0. Therefore, conditions of (iv’) in Theorem 3.3 hold. Thus,

lim
t→∞
〈x1(t)〉 = 1.0703, lim

t→∞
〈x2(t)〉 = 0.2744, lim

t→∞
x3(t) = 0 a.s.
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Figure 4. The solution (x1(t), x2(t), x3(t)) of (4.1) with σ2
1 = 0.05, σ2

2 = 0.4 and σ2
3 = 0.002 (a) paths

of x1(t), x2(t), x3(t), 〈x1(t)〉 and 〈x3(t)〉; (b) probability density functions of x1(t) at t = 60000; (c)
probability density functions of x3(t) at t = 60000.
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Figure 5. The solution (x1(t), x2(t), x3(t)) of (4.1) with σ2
1 = 0.02, σ2

2 = 0.002 and σ2
3 = 0.2. (a)

paths of x1(t), x2(t), x3(t), 〈x1(t)〉 and 〈x2(t)〉; (b) probability density functions of x1(t) at t = 60000;
(c) probability density functions of x2(t) at t = 60000.
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(v) In Figure 6, set σ2
1 = 0.002, σ2

2 = 0.002, σ2
3 = 0.002. Then, κ1 = 0.599 > 0,

a21κ1−a11κ2 = 0.0544 > 0, a31a22κ1 +a32a21κ1−a32a11κ2−a11a22κ3 = 0.006 > 0,
D1 = 0.0392, D2 = 0.0083 and D3 = 0.0038. Therefore all conditions of (v’) in
Theorem 3.3 have been checked. Thus,

lim
t→∞
〈x1(t)〉 = 1.0805, lim

t→∞
〈x2(t)〉 = 0.2250, lim

t→∞
〈x3(t)〉 = 0.1144 a.s.
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Figure 6. The solution (x1(t), x2(t), x3(t)) of (4.1) with σ2
1 = 0.002, σ2

2 = 0.002 and σ2
3 = 0.002. (a)

paths of x1(t), x2(t), x3(t), 〈x1(t)〉, 〈x2(t)〉 and 〈x3(t)〉; (b) probability density functions of x1(t) at
t = 60000; (c) probability density functions of x2(t) at t = 60000; (d) probability density functions of
x3(t) at t = 60000.

As can be seen from Figure 2 that if noise intensity σ2
1 is large, then all the

populations in model (4.1) go to extinction. From Figure 3, we can see that great
noise intensity σ2

i (i = 2, 3) can make predator xi extinction. Moreover, if noise
intensity σ2

1 is small, then prey x1 is persistent in mean. As can be seen from Figure 4
that prey x1 and top predator x3 are persistent in mean while intermediate predator
x2 goes to extinction. From Figure 5, we know that prey x1 and predator x2 are
persistent in mean while predator x3 goes to extinction. It can be seen from Figure
6 that all the populations in model (4.1) are persistent in mean.

From the above numerical simulations, we see can that the originally persist
species x1, x2 and x3 in the deterministic model (see Figure 1) has emerged the
possibility of extinction under the noise disturbance (see Figure 2). This means
that noise intensity has great influence on population dynamics.
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5. Conclusions and discussions

In this paper, we consider a stochastic three-species food-web model with intraguild
predation. The main result is Theorem 3.3, which establishes the sufficient condi-
tions for the persistence and extinction of each population in model (1.2).

Theorem 3.1 explains the effects of white noise and omnivores on the population
dynamics. From Theorem 3.1, we have the following results.

(i) If the noise intensity σ2
1 is large, that is, r1 <

σ2
1

2 , then prey x1 will become
extinct. Moreover, extinction of prey will make intermediate predator x2 and top
predator x3 extinction.

(ii) For predator xi (i = 2, 3), if ai1
a11

< κi
κ1

, then xi becomes extinct. Note
that ai1 > 0 (i = 1, 2, 3) and κi > 0 (i = 2, 3). Thus, κ1 > 0. Further, prey x1

is persistent in mean. From the proof of Theorem 3.1, we know that great noise
intensity σ2

i (i = 2, 3) can make predator xi extinction regardless of the size of prey.

Further, if noise intensity σ2
1 is small, that is, r1 >

σ2
1

2 , then prey x1 is persistent in
mean.

(iii) If a21
a11

< κ2

κ1
and a31

a11
> κ3

κ1
, then predator x2 will go to extinction, and prey

x1 and predator x3 will be persistent in mean. This means that great noise intensity
σ2

2 can make x2 extinction. Further, if the noise intensities σ2
1 and σ2

3 are small,
then prey x1 and predator x3 are persistent in mean.

(iv) If a31a22κ1 + a32a21κ1 − a32a11κ2 − a11a22κ3 < 0, then predator x3 will go
to extinction. That is, great noise intensity σ2

3 can make predator x3 extinction.
Further, if the noise intensities σ2

1 and σ2
2 are small, then prey x1 and predator x2

are persistent in mean.

(v) If the intensities σ2
1 , σ2

2 and σ2
3 are small, then all populations in model (1.2)

will be persistent in mean.

If a13 = a31 ≡ 0, that is, top predator x3 only feeds on intermediate predator
x2, then stochastic food-web model (1.2) can be reduced to stochastic food-chain
model (3.30). It is clear that a31κ1 − a11κ3 < 0. Thus, for the stochastic food-chain
model (3.30), from Corollary 3.2, if intermediate predator x2 becomes extinct, then
top predator x3 must go to extinction. This is consistent with the result in [11].
However, for stochastic food-web model (1.2), from Remark 3.2, we can see that
top predator x3 can be persistent in mean even if intermediate predator x2 goes
extinct. This makes sense, because top predator x3 can feed upon prey x1. This
results show that omnivory has great effects on the population dynamics.

Some interesting problems deserve further consideration. As done in [12, 13],
one can introduce time delays in model (1.2). Moreover, one can study model with
other perturbations, such as Markovian switching or Lévy jumps. We leave this for
future consideration.
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2018, 106, 258–265.


	Introduction
	Preliminary
	Main results
	Numerical simulations
	Conclusions and discussions

