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HOMEOMORPHISMS RELATED TO THE
POLYNOMIAL-LIKE ITERATIVE EQUATION

ON S1 ∗

Pingping Zhang1,†, Weinian Li1 and Weihong Sheng1

Abstract In this paper we study all homeomorphisms on the unit circle S1,
whose lifts are C0 solutions of a class of nonhomogeneous polynomial-like itera-
tive equation. By an auxiliary equation, we present all those homeomorphisms
and illustrate our results by examples.
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1. Introduction

Let X be a nonempty subset of R, the n-th iterate of a self-mapping f : X → X is
defined by fn(x) = f(fn−1(x)) and f0(x) = x for all x ∈ X inductively. The origin
of the iterative functional equation can be traced back to 1815, C. Babbage wrote
iterative roots problem ( [1]). As a weak version of embedding flows ( [5]), itera-
tive roots problem attracts many people in both dynamical systems and functional
equations (e.g. [2,9,10,26,38]). It is known that the problem of iterative roots is to
solve the elementary iterative equation

fk(x) = F (x), ∀x ∈ X, (1.1)

where F : X → X is a given map and f : X → X is an unknown map. Even for
simple F (x), the equation (1.1) is not solved entirely ( [14,16]).

A more general form is the polynomial-like iterative equation

λnf
n(x) + λn−1f

n−1(x) + ...+ λ1f(x) = F (x), ∀x ∈ X, (1.2)

an equation of the linear dependence of iterates, which becomes one of the most fa-
vorite objects for those people being interested in iterative equations. For nonlinear
F , the existence, uniqueness and the stability of the C0 solutions of Eq.(1.2) have
been investigated ( [13, 18, 34, 40]) and further results such as smooth ( [32]), ana-
lyticity ( [21]) and convexity ( [6,27,37]) were also given. Higher dimensional cases

†the corresponding author. Email address:ppz.2005@163.com(P. Zhang)
1School of Science, Binzhou University, Huanghe 5th Road, Binzhou 256603,
China
∗The authors were supported by the Natural Science Foundation of Shan-
dong Province (ZR2017MA019), Scientific Research Fund of Binzhou Uni-
versity (BZXYL1802) and Scientific Research Fund of Binzhou University
(BZXYL1703).

http://jaac.ijournal.cn
http://dx.doi.org/10.11948/jaac20190001


72 P. Zhang, W. Li & W. Sheng

and multivalued cases refer to the references [11, 25, 33] and [12, 28], respectively.
Linear F ( [20,39]), i.e.,

fn(x) + λn−1f
n−1(x) + ...+ λ1f(x) + λ0x = c, ∀x ∈ X, c ∈ R,

even the homogeneous equation

fn(x) + λn−1f
n−1(x) + ...+ λ1f(x) + λ0x = 0 (1.3)

is attractive, which has been investigated extensively (see [3,4,7,15,19,23,24,29,36]
and some references therein). Substituting f(x) = rx (r ∈ C) in (1.3), we get the
characteristic equation

P (r) := rn + λn−1r
n−1 + ...+ λ1r + λ0 = 0 (1.4)

and r is called characteristic root. Under restrictive conditions on (1.4), the men-
tioned references present the C0 solutions of Eq.(1.3) by all those linear solutions
f(x) = rx.

It is also interesting to investigate iterative equation on the unit circle S1. As
we all know that a homeomorphism P : S1 → S1 has a unique lift ϕ : R→ R such
that

P (ei2πx) = ei2πϕ(x) (1.5)

and the lift ϕ satisfies

ϕ(x+ 1) = ϕ(x) + k, k ∈ {−1, 1}. (1.6)

We call P is orientation-preserving if k = 1 and orientation-reversing if k = −1. By
lifting maps on S1 to the whole line R, many results on iterative roots and iteration
groups on S1 are given ( [8, 17, 22, 30, 35]). In 2007, M. C. Zdun and W. Zhang
( [31]) considered the C0 solutions of the general iterative equation

Φ(f(z), f2(z), ..., fn(z)) = F (z), z ∈ S1 (1.7)

and proved the existence, uniqueness and stability in the set

H0
1 (S1,S1) = {f ∈ C0(S1,S1) : f(S1) = S1 homeomorphically and f(1) = 1}

using fixed point theorems, where 1 indicates the point (1, 0) in the complex plane
C. We say that Lemma 3.2 plays an important role in Ref. [31]. Let F̃ and Φ̃ be
the lifts of F and Φ, respectively, this lemma shows that Eq.(1.7) is equivalent to

Φ̃(f̃(x), f̃2(x), ..., f̃n(x)) = F̃ (x), x ∈ R

under the assumptions that Φ̃(0, ..., 0) = 0 and F̃ (0) = 0.
Removing the condition F̃ (0) = 0, in this paper we consider all homeomorphisms

P : S1 → S1 whose lifts ϕ : R → R are C0 solutions of the nonhomogeneous
polynomial-like iterative equation

ϕn(x) + λn−1ϕ
n−1(x) + ...+ λ1ϕ(x) + λ0x = c, x ∈ R. (1.8)

For this purpose, we study the C0 solutions ϕ which satisfy Eq.(1.6) and Eq.(1.8)
simultaneously, and then we construct all those homeomorphisms P by using (1.5).
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2. Preliminaries

We first give a lemma used in the proofs of Lemma 2.2 and Lemma 2.3.

Lemma 2.1 (Lemma 3, [39]). Suppose that all roots γj 6= 0 (j = 1, 2, ..., n) of the
characteristic equation (1.4) are real and none of them is equal to 1. Then Eq.(1.8)
can be reduced to

gn(x) + λn−1g
n−1(x) + ...+ λ1g(x) + λ0x = 0 (2.1)

by the substitution g(x) = ϕ(x+ η)− η, where η := c/
∏n
j=1(1− γj), and vice versa.

Eq.(2.1) is called an auxiliary equation in the present paper. We say that Lemma
2.2 and Lemma 2.3 are important in the proof of theorems.

Lemma 2.2. Assume that none of roots of the characteristic equation (1.4) equals
0 and 1. If a homeomorphism ϕ : R → R, satisfying ϕ(x + 1) = ϕ(x) + 1, is
a C0 solution of Eq.(1.8), then g : R → R is a C0 solution of Eq.(2.1), where

g(x) = ϕ(x+ η1 − 1)− η1 + 1 and η1 = (c+ 1 +
∑n−1
j=0 λj)/

∏n
j=1(1− γj).

Proof. Note that
ϕ(x) = ϕ(x+ 1)− 1, x ∈ R.

By induction we have

ϕj(x) = ϕj(x+ 1)− 1 for all j ∈ N0,

then Eq.(1.8) can be rewritten as

ϕn(x+ 1) + λn−1ϕ
n−1(x+ 1) + ...+ λ1ϕ(x+ 1) + λ0x = c+ 1 +

n−1∑
j=1

λj . (2.2)

Let t := x+ 1, then Eq.(2.2) is equivalent to the equation

ϕn(t) + λn−1ϕ
n−1(t) + ...+ λ1ϕ(t) + λ0t = c+ 1 +

n−1∑
j=0

λj .

Consider the auxiliary equation (2.1). From Lemma 2.1, using the translation
transformation

g(t) := ϕ(t+ η1)− η1,

we have
ϕ(t) = g(t− η1) + η1,

where

η1 := (c+ 1 +

n−1∑
i=0

λi)/

n∏
i=1

(1− γi).

Then

ϕ(x) = ϕ(x+ 1)− 1

= ϕ(t)− 1
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= g(t− η1) + η1 − 1

= g(x− η1 + 1) + η1 − 1,

that is
g(x) = ϕ(x+ η1 − 1)− η1 + 1.

This completes the proof.

Lemma 2.3. Assume that none of roots of the characteristic equation (1.4) equals
0 and 1. If a homeomorphism ϕ : R → R, satisfying ϕ(x + 1) = ϕ(x) − 1, is
a C0 solution of Eq.(1.8), then g : R → R is a C0 solution of Eq.(2.1), where

g(x) = ϕ(x+ η2− 1)− η2− 1 and η2 := (c+ (−1)n +
∑n−1
j=0 (−1)jλj)/

∏n
j=1(1− γj).

Proof. From the condition

ϕ(x+ 1) = ϕ(x)− 1, x ∈ R,

by induction we have ϕj(x) = ϕj(x+ 1)− 1, j is even,

ϕj(x) = ϕj(x+ 1) + 1, j is odd.
(2.3)

Using (2.3), we rewrite Eq.(1.8) as

ϕn(x+ 1) + λn−1ϕ
n−1(x+ 1) + ...+ λ1ϕ(x+ 1) + λ0x = c+ (−1)n +

n−1∑
j=1

(−1)jλj ,

Let t := x+ 1, we have

ϕn(t) + λn−1ϕ
n−1(t) + ...+ λ1ϕ(t) + λ0t = c+ (−1)n +

n−1∑
j=0

(−1)jλj .

Consider the auxiliary equation (2.1). By Lemma 2.1, using the translation
transformation

g(t) := ϕ(t+ η2)− η2,
we get

ϕ(t) = g(t− η2 − 1) + η2,

where

η2 := (c+ (−1)n +

n−1∑
j=0

(−1)jλj)/

n∏
j=1

(1− γj).

Then

ϕ(x) = ϕ(x+ 1) + 1

= ϕ(t) + 1

= g(t− η2) + η2 + 1

= g(x− η2 + 1) + η2 + 1,

thus,
g(x) = ϕ(x+ η2 − 1)− η2 − 1.

This completes the proof.
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3. Main results

Theorem 3.1. If the characteristic equation (1.4) has roots 1 < γ1 < ... <
γn (or 0 < γ1 < ... < γn < 1). Then every homeomorphism P : S1 → S1, whose
lift ϕ is a C0 solution of Eq.(1.8), is orientation-preserving and can be constructed
by using (1.5).

Proof. Under the condition that 1 < γ1 < ... < γn (or 0 < γ1 < ... < γn < 1),
each C0 solution g : R→ R of Eq.(2.1) is strictly increasing and can be constructed
by using Theorem 2 in Ref. [29].

Let ϕ(x) := g(x − η1 + 1) + η1 − 1. If ϕ satisfies ϕ(x + 1) = ϕ(x) + 1, from
Lemma 2.2 we find all orientation-preserving homeomorphisms P : S1 → S1 by
using P (ei2πx) = ei2πϕ(x). This completes the proof.

Theorem 3.2. If the characteristic equation (1.4) has roots γ1 < ... < γn <
−1 (or − 1 < γ1 < ... < γn < 0). Then every homeomorphism P : S1 → S1,
whose lift ϕ is a C0 solution of Eq.(1.8), is orientation-reversing and can be con-
structed by using (1.5).

Proof. Under the condition that γ1 < ... < γn < −1 (or −1 < γ1 < ... < γn < 0),
each C0 solution g : R → R of Eq.(2.1) is orientation-reversing homeomorphism
and can be constructed by using Theorem 4 in Ref. [29].

Let ϕ(x) := g(x − η2 + 1) + η2 + 1. If ϕ satisfies ϕ(x + 1) = ϕ(x) − 1, using
Lemma 2.3 we get all orientation-reversing homeomorphisms P : S1 → S1 by using
P (ei2πx) = ei2πϕ(x). This completes the proof.

Theorem 3.3. If the characteristic equation (1.4) has roots 1 < −γ1 < ... <
−γp < γp+1 < ... < γn (or 0 < −γ1 < ... < −γp < γp+1 < ... < γn < 1). Then
each homeomorphism P : S1 → S1, whose lift ϕ is a C0 solution of Eq.(1.8), can
be constructed by using (1.5). There are two cases:

(i) P : S1 → S1, whose lift ϕ is a C0 solution of a lower equation with charac-
teristic roots γ1, ..., γp, is orientation-reversing.

(ii) P : S1 → S1, whose lift ϕ is a C0 solution of a lower equation with
characteristic roots γp+1, ..., γn, is orientation-preserving.

Proof. (i) If 1 < −γ1 < ... < −γp < γp+1 < ... < γn and g is an orientation-
reversing homeomorphism of Eq.(2.1). By using the method provided in Theorem
4.1 of Ref. [36], we can remove the characteristic roots γn, γn−1, ..., γp+1 one after
another and eventually change Eq.(2.1) into the p-th order iterative equation

gp(x) + λ′p−1g
p−1(x) + ...+ λ′1g(x) + λ′0x = 0. (3.1)

Repeating the progress as that of Theorem 3.2, each C0 solution g : R→ R of
Eq.(3.1) can be constructed. Now let ϕ(x) := g(x− η3 + 1) + η3 + 1, where

η3 := (c+ (−1)p +

p−1∑
j=0

(−1)jλj)/

p∏
j=1

(1− γj).

If ϕ satisfies ϕ(x+1) = ϕ(x)−1, by using Lemma 2.3 we find all those orientation-
reversing homeomorphisms P : S1 → S1 by using P (ei2πx) = ei2πϕ(x).

(ii) If 1 < −γ1 < ... < −γp < γp+1 < ... < γn and g is an orientation-preserving
homeomorphism of Eq.(2.1), we consider the dual equation of Eq.(2.1). By the
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same method as that of the case (i), we remove γ1, γ2, ..., γp in turn and eventually
change the dual equation into the k-th order iterative equation (k := n− p)

gk(x) + λ
′′

k−1g
k−1(x) + ...+ λ

′′

1g(x) + λ
′′

0x = 0. (3.2)

Repeating the process as that of Theorem 3.1, each C0 solution g : R → R of
Eq.(3.2) can be constructed. Now let ϕ(x) := g(x− η4 + 1) + η4 − 1, where

η4 = (c+ 1 +

k−1∑
j=0

λj)/

k∏
j=1

(1− γj).

If ϕ satisfies ϕ(x + 1) = ϕ(x) + 1, using Lemma 2.2 we find all those orientation-
reversing homeomorphisms P : S1 → S1 by using P (ei2πx) = ei2πϕ(x). This com-
pletes the proof.

Example 3.1. Consider an iterative equation

ϕ2(x)− 5

3
ϕ(x)− 2

3
x = 1. (3.3)

Clearly, the characteristic equation

r2(x)− 5

3
r − 2

3
= 0

has two roots r1 = − 1
3 , r2 = 2 satisfying

0 <
1

3
< 1 < 2,

and the auxiliary function

g2(x)− 5

3
g(x)− 2

3
x = 0.

has two characteristic solutions g1(x) = 2x and g2(x) = − 1
3x.

Let ϕ1(x) = g1(x− ω1 + 1) + ω1 − 1, where

ω1 = (c+ 1 +

1∑
j=0

λj)/

2∏
j=1

(1− γj)

= (1 + 1− 7

3
)/(−4

3
)

=
1

4
,

we get

ϕ1(x) = 2x+
3

4
.

Let ϕ2(x) = g2(x− ω2 + 1) + ω2 + 1, in which

ω2 = (c+ (−1)2 +

1∑
j=0

(−1)jλj)/

2∏
j=1

(1− γj)
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= (1 + 1 + 1)/(−4

3
)

= −9

4
,

we have

ϕ2(x) = −1

3
x− 7

3
.

Neither of ϕ1(x + 1) = ϕ1(x) + 1 and ϕ2(x + 1) = ϕ2(x) − 1 holds, by using
Theorem 3.3 we have no homeomorphisms P whose lifts ϕ satisfy Eq.(3.3).

4. Further discussion

All characteristic roots having same sign are real and inside (or outside) the unit
circle S1, Theorem 3.1 and Theorem 3.2 give all those homeomorphisms on unit
circle with lifts being C0 solutions of Eq.(1.8). Theorem 3.3 illustrate a case that
characteristic roots have different sign. In fact, by using the C0 solutions of the
auxiliary equation (2.1) and Eq.(1.6), we can discuss the more general case. We
give an example.

Example 4.1. Consider the 3rd-order iterative equation

ϕ3(x) +
1

2
ϕ2(x)− 13

2
ϕ(x) + 3x = 5.

Clearly, the characteristic equation

r3 +
1

2
r2 − 13

2
r + 3 = 0

has three real roots r1 = 1
2 , r2 = 2, r3 = −3. So the auxiliary function

g3(x) +
1

2
g2(x)− 13

2
g(x) + 3x = 0 (4.1)

has three characteristic solutions g1(x) := 1
2x, g2(x) := 2x, g3(x) := −3x and all

C0 solutions g of Eq.(4.1) can be constructed by using Theorem 4.2 in Ref. [36].
For convenience, here we only consider ϕ1, ϕ2, ϕ3 yielded by g1, g2, g3, respec-

tively. Let ϕj(x) = gj(x− τ1 + 1) + τ1 − 1 (j = 1, 2), where

τ1 = (c+ 1 +

2∑
j=0

λj)/

3∏
j=1

(1− γj)

= (5 + 1− 3)/(−2)

= −3

2
,

then

ϕ1(x) =
1

2
x− 5

4
, ϕ2(x) = 2x+

5

2
. (4.2)
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Let ϕ3(x) = g3(x− τ2 + 1) + τ2 + 1, where

τ2 = (c+ (−1)3 +

2∑
j=0

(−1)jλj)/

3∏
j=1

(1− γj)

= (5− 1 + 10)/(−2)

= −7,

then

ϕ3(x) = −3x− 30. (4.3)

Neither (4.2) satisfy ϕ(x+ 1) = ϕ(x) + 1 nor (4.3) satisfies ϕ(x+ 1) = ϕ(x)− 1,
so we have no orientation-preserving homeomorphisms P on unit circle with lift ϕ1

or ϕ2, and have no orientation-reversing homeomorphism P on unit circle with lift
ϕ3.

In Lemma 2.1-2.3, we assume that all roots γj 6= 0 (j = 1, 2, ..., n) of the
characteristic equation (1.4) are real and none of them is equal to 1. The more
general cases involving complex characteristic roots have no result, such as the
characteristic equation (1.4) has simple roots

γ1, γ2, ..., γp ∈ R, γp+1, ..., γs, γ̄p+1, ..., γ̄s ∈ C\R, γs+1, γs+2, ..., γt ∈ R,

where s− p+ t = n, which satisfy

0 < −γ1 < ... < −γp < |γp+1| < ... < 1 < ... < |γs| < γs+1 < ... < γt. (4.4)

How to construct the homeomorphism P : S1 → S1 under condition (4.4), whose
lift ϕ is a C0 solution of Eq.(1.8), is unsolved.
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