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FLOCKING AND COLLISION AVOIDANCE OF
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Abstract The dynamical behavior of a flock model with a singular com-
munication rate and extra interaction terms is investigated in this paper. A
rigorous theoretical proof of collision avoidance between any two agents is
obtained which guarantees the existence of global solutions. Moreover, a suf-
ficient condition for the existence of time-asymptotic flocking is also acquired
and numerical simulations verified these results which show that a compact
equilibrium configuration may emerge.
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1. Introduction

Emergent collective behavior includes flocking [1, 2], consensus [9, 14, 19] and syn-
chronization [15, 16], which are ubiquitous in nature, such as flocks of birds and
fish migration. Inspired by the above phenomenon, many scholars have developed
a keen interest in the study of the mathematical mechanism of flocking. Flocking
can describe the phenomenon of group collaboration, that is, relying on limited
environmental information and simple interaction rules to change from disordered
state to ordered one [1, 2].

In recent years, synergistic behavior of self-organizing groups in biology, robotics,
sociology, economics and other researches have attracted the attention of scholars.
In 1986, Reynolds introduced three heuristic rules in [13], that is, collision avoidance,
velocity matching and flock centering. These regulations are meant to illustrate how
a single agent operates according to the location and speed of nearby flockmates.
Vicsek et al. proposed a simple model of self-ordered motion in systems of particles
with motivated interaction in [17], 1995. Subsequently, many of models based on
local interaction were proposed and studied from both theoretical and numerical
perspectives. In these discussions, the well-known Cucker-Smale model has been
constructed in [1, 2] which built a new platform to study flocking behavior and
inspired follow-up work. The C-S system relies on a simple rule that can be traced
back to [13] to describe how the agents interact to align with their neighbors. The
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motion of the ith agent is characterized by its position and velocity, which are
expressed as xi(t) ∈ Rd and vi(t) ∈ Rd respectively. The evolution of each agent
based on limited environmental information is described as follows:

d
dtxi(t) = vi(t)

d
dtvi(t) = α

∑N
j=1 aij(x)(vj(t)− vi(t)), i = 1, 2, ..., N,

(1.1)

where α depicts the interaction strength and x = (x1, · · · , xN )T . Moreover, aij(x)
characterize the intensity of interaction between j and i, which is defined as

aij(x) =
K

(σ2 + ‖xi − xj‖2)β
, (1.2)

where K > 0, σ > 0, β ≥ 0. The notation ‖ · ‖ is the Euclidean norm in Rd.
Based on the original work of Cucker and Smale(see [1, 2]) and Ha-Liu(see [6]),

various improvements and modifications of the classical C-S system have been made
in several directions during the recent years, such as collision avoidance [3, 8], in-
troduction of time delay [4, 5, 10, 18], and even adapted out of its original realm to
explain emergence of cultural classes [7].

In this paper, we consider a more realistic requirement, that is, flocking behavior
can avoid collision while evolving. Inspired by the work in [11], we describe a flock
model with a singular communication rate and extra interaction terms between
agents as follows

d
dtxi(t) = vi(t), i = 1, 2, · · · , N
d
dtvi(t) = α

∑N
j=1,j 6=i ψ(rij)(vj(t)− vi(t)) +

∑N
j=1 f(rij),

(1.3)

with α > 0 and

f(rij) =
‖xi − xj‖ −R
‖xi − xj‖

(xj(t)− xi(t)) for 1 ≤ i, j ≤ N. (1.4)

The associated initial conditions are

(xi, vi)(0) = (xi0, vi0), i = 1, 2, · · · , N. (1.5)

In (1.3), rij = ‖xi − xj‖, i, j ∈ {1, 2, · · · , N}. R is a preset distance to control the
inter-agent distance. The right end of the second equation of (1.3), ψ(r) is singular
at r = 0, that is, ψ(0) = +∞; the second term is an extra interaction term that
produces an attractive or repulsive effect. We list the main assumptions on the
communication rate ψ(·).

Assumption 1.1. ψ(·) is non-negative, non-increasing, Lipschitz continuous on

(0,∞) with Lipschitz constant L > 0 and
∫ δ

0
ψ(r)dr = +∞ for some δ > 0.

One of our intentions is to establish sufficient conditions to guarantee that system
(1.3) converges to a flock. A flock, presented by Ha and Liu [6], is defined as follows.

Definition 1.1. let {xi(t), vi(t)}, i ∈ {1, 2, · · · , N} be the solution to (1.1), a time-
asymptotic flocking can be achieved if and only if the system satisfies the following
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two conditions:
(i) (velocity alignment) The velocity fluctuations go to zero asymptotically:

lim
t→+∞

‖vi(t)− vj(t)‖ = 0, for i, j = 1, 2, · · · , N.

(ii) (forming a group) The position fluctuations are uniformly bounded in time t:

sup
0≤t<+∞

‖xi(t)− xj(t)‖ < +∞, for i, j = 1, 2, · · · , N.

For the sake of follow-up discussion, we introduce macroscopic variables

xc(t) =
1

N

N∑
i=1

xi(t) and vc(t) =
1

N

N∑
i=1

vi(t), (1.6)

which represent the center and the average velocity of the system respectively.
Consider the second equation of (1.3), by the symmetry of the indices, we have

α
N∑
i=1

N∑
j=1,j 6=i

ψ(rij)(vj(t)− vi(t)) +
N∑
i=1

N∑
j=1

f(rij)

= − α
N∑
j=1

N∑
i=1,i6=j

ψ(rij)(vj(t)− vi(t))−
N∑
j=1

N∑
i=1

f(rij),

(1.7)

which yields

2
N∑
i=1

d

dt
vi(t) =

N∑
i=1

2
N∑

j=1,j 6=i

ψ(rij)(vj(t)− vi(t)) + 2
N∑
j=1

f(rij)

 = 0. (1.8)

Hence,
d

dt
xc(t) = vc(t) and

d

dt
vc(t) = 0. (1.9)

The deviation variables x̂i(t), v̂i(t) are denoted by x̂i(t) := xi(t) − xc(t), v̂i(t) :=
vi(t)− vc(t) respectively, and then the error system of (1.3) can be written as

d
dt x̂i(t) = v̂i(t), i = 1, 2, · · · , N
d
dt v̂i(t) = α

∑N
j=1,j 6=i ψ(r̂ij)(v̂j(t)− v̂i(t)) +

∑N
j=1 f(r̂ij).

(1.10)

The second equation of (1.3) is rewritten due to

d

dt
v̂i(t) =

d

dt
vi(t)−

d

dt
vc(t)

= α
N∑

j=1,j 6=i

ψ(rij)(vj(t)− vi(t)) +
N∑
j=1

f(rij)

= α

N∑
j=1,j 6=i

ψ(‖xi − xc − (xj − xc)‖)(vj(t)− vc(t)− (vi(t)− vc(t)))
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+
N∑
j=1

f(‖xi − xc − (xj − xc)‖)

= α
N∑

j=1,j 6=i

ψ(r̂ij)(v̂j(t)− v̂i(t)) +
N∑
j=1

f(r̂ij), (1.11)

where r̂ij = ‖x̂i − x̂j‖. Thus, x̂i(t), v̂i(t) satisfy (1.10) and x̂c(t) = 0, v̂c(t) = 0.

Thus, to study the flocking behavior of (1.3), we only need to consider the
dynamic behavior of (1.10). Specifically, for System (1.10), we need to prove that
limt→+∞ v̂i(t) = 0 and limt→+∞ r̂ij(t) < +∞.

This paper is organized as follows. We offer a rigorous collision-free mechanism
analysis of system (1.3) in Section 2 and further indicating the existence of global
solutions. Asymptotic convergence of system (1.3) are given in Section 3. Some
numerical simulation experiments are given in Section 4 to elucidate the availability
of the theoretical results. Finally, the conclusion is drawn and further work is stated
briefly in Section 5.

2. A collision-avoiding condition

A collision avoidance condition of System (1.3) is proposed, based on which the
existence of the global solution is also stated. To carry out this, we first propose
the following auxiliary proposition.

Proposition 2.1. Let {xi(t), vi(t)}, i ∈ {1, 2, · · · , N} be the solution to (1.3)-(1.5).
Then, for t ≥ 0, we have

sup
1≤i≤N

‖vi(t)‖ ≤M and sup
0≤t<+∞

||xi(t)− xj(t)|| ≤ xM , (2.1)

where xM > 0, M > 0 are constants.

Proof. Motivated by the work of [11], the energy of System (1.3) is expressed as
follows

Q(t) =
1

2

N∑
i=1

‖vi(t)‖2 +
1

4

N∑
i,j=1

(‖xi(t)− xj(t)‖ −R)2, t ≥ 0. (2.2)

The derivative of Q(t) with respect to t along the trajectory of (1.3)-(1.5) is ex-
pressed as

dQ

dt

∣∣∣∣
(1.3)

=
1

2

d

dt

(
N∑
i=1

‖vi(t)‖2
)

+
1

4

d

dt

N∑
i,j=1

(‖xi(t)− xj(t)‖ −R)2

=
N∑
i=1

〈
vi(t),

d

dt
vi(t)

〉
+

1

2

N∑
i,j=1

(‖xi(t)− xj(t)‖ −R)
d

dt
‖xi(t)− xj(t)‖.

(2.3)
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More specific,

N∑
i=1

〈
vi(t),

d

dt
vi(t)

〉
=

N∑
i=1

〈vi(t), α
N∑
j=1

ψ(rij)(vj(t)− vi(t)) +
N∑
j=1

f(rij)〉

= −α
2

N∑
i,j=1

ψ(rij)‖vj − vi‖2 −
1

2

N∑
i,j=1

〈vj(t)− vi(t), f(rij)〉.

(2.4)

Noting the fact that

d

dt
‖xi(t)− xj(t)‖ =

〈xi(t)− xj(t), vi(t)− vj(t)〉
‖xi(t)− xj(t)‖

. (2.5)

Put (2.4) and (2.5) in (2.3), and then (2.3) is reduced to

dQ

dt

∣∣∣∣
(1.3)

= −α
2

N∑
i,j=1

ψ(rij)‖vj(t)− vi(t)‖2 ≤ 0, for t ≥ 0, (2.6)

which implies that for all t ≥ 0,

1

2

N∑
i=1

‖vi(t)‖2 +
1

4

N∑
i,j=1

(‖xi(t)− xj(t)‖ −R)2 = Q(t) ≤ Q(0). (2.7)

Further,
∑N
i,j=1(‖xi(t)−xj(t)‖−R)2 ≤ 4Q(0). Hence, it follows from the symmetry

of the indices i and j that sup0≤t<+∞ ‖xi(t)− xj(t)‖ ≤ R+
√

2Q(0) =: xM , which
means that ‖xi(t)− xj(t)‖ is uniformly bounded by xM , for all i, j ∈ {1, 2, . . . , N}
and t ≥ 0. Carrying out (2.7) again, there exists a bound M such that ‖vi(t)‖ ≤
M, i = 1, 2, · · · , N, t ≥ 0. This completes the proof if Proposition 2.1.

Assisted by Proposition 2.1, a collision avoidance condition will be proposed in
the following theorem.

Theorem 2.1. Let {xi(t), vi(t)}, i ∈ {1, 2, · · · , N} be the solution to (1.3)-(1.5).
Assume that ψ(·) satisfies the Assumption 1.1 and the initial configuration (1.5)
satisfy ‖xi0−xj0‖ > 0, for i 6= j. Then ||xi(t)−xj(t)|| > 0 for all t > 0 and i 6= j,
that is, collision avoidance can be maintained.

Proof. To prove that ||xi(t) − xj(t)|| > 0 for all i, j ∈ {1, 2, · · · , N}, i 6= j and
t > 0, we just show that it is impossible to collide on [0, T ] for any T > 0. Otherwise,
there is a ∈ (0, T ) such that a is the first time of collision of any agents. Clearly,
due to the Cauchy-Lipschitz theorem, System (1.3) admits a unique and smooth
solution on [0, a). Then, it follows from the definition of a that there exists an
index s ∈ {1, 2, · · · , N} such that the i-th agent collides with some others. Denote
S := { i ∈ {1, 2, · · · , N} | limt→a− ‖xi(t)− xs(t)‖ = 0 }. This provides the fact that
limt→a− ‖xi(t)− xj(t)‖ = 0 for all i, j ∈ S.

Let ‖x(t)‖2S :=
∑
i,j∈S ||xi(t) − xj(t)||2 and ‖v(t)‖2S :=

∑
i,j∈S ||vi(t) − vj(t)||2.

By Proposition 2.1, it is straightforward to get that ‖x(t)‖2S≤2|S|2x2
M and ‖v(t)‖2S≤

2|S|2M2. Then from

±d‖x(t)‖2S
dt

≤ 2‖x(t)‖S · ‖v(t)‖S , a.e. t ∈ [0, a),
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we have ∣∣∣∣d‖x(t)‖S
dt

∣∣∣∣ ≤ ‖v(t)‖S , a.e. t ∈ [0, a). (2.8)

Furthermore, it follows from the second equation of (1.3) that

d‖v(t)‖2S
dt

= 2
∑
i,j∈S
〈vi(t)− vj(t), v̇i(t)− v̇j(t)〉

= 2
∑
i,j∈S
〈vi(t)− vj(t), α

N∑
l=1

ψ(ril)(vl(t)− vi(t)) +
N∑
l=1

f(ril)〉

− 2
∑
i,j∈S
〈vi(t)− vj(t), α

N∑
l=1

ψ(rjl)(vl(t)− vj(t)) +
N∑
l=1

f(rjl)〉

= 2α
∑
i,j∈S
〈vi(t)− vj(t),

N∑
l=1

[ψ(ril)(vl(t)− vi(t))− ψ(rjl)(vl(t)− vj(t))]〉

+ 2
∑
i,j∈S
〈vi(t)− vj(t),

N∑
l=1

(f(ril)− f(rjl))〉.

(2.9)

For convenience, we denote

I = 2α
∑
i,j∈S
〈vi(t)− vj(t),

N∑
l=1

[ψ(ril)(vl(t)− vi(t))− ψ(rjl)(vl(t)− vj(t))]〉,

II = 2
∑
i,j∈S
〈vi(t)− vj(t),

N∑
l=1

(f(ril)− f(rjl))〉.

(2.10)

Below we discuss I, II separately. For the former, we rewrite it as follows

I = 2α
∑
i,j∈S
〈vi(t)− vj(t),

∑
l∈S

+
∑
l 6∈S

 [ψ(ril)(vl(t)− vi(t))− ψ(rjl)(vl(t)− vj(t))]〉.

(2.11)

For one thing, by monotonicity of ψ(·), ‖xi(t) − xl(t)‖S ≤ ‖x(t)‖S , and ‖xj(t) −
xl(t)‖S ≤ ‖x(t)‖S , one can be obtained that

2α
∑
i,j∈S
〈vi(t)− vj(t),

∑
l∈S

[ψ(ril)(vl(t)− vi(t))− ψ(rjl)(vl(t)− vj(t))]〉

=− α
∑
i,j,l∈S

〈vi(t)− vj(t), (ψ(ril) + ψ(rjl))(vi(t)− vj(t))〉

+ α
∑
i,j,l∈S

(〈vi(t)− vj(t), (ψ(ril)− ψ(rjl))(vl(t)− vi(t))〉

+ α
∑
i,j,l∈S

〈vi(t)− vj(t), (ψ(ril)− ψ(rjl))(vl(t)− vj(t))〉
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≤− 2α|S|ψ(||x||S) · ||v||2S + 2α
∑
i,j,l∈S

〈vi(t)− vj(t), (ψ(ril)− ψ(rjl))(vl(t)− vj(t))〉

≤ − 2α|S|ψ(||x||S) · ||v||2S + 4αLM |S|
√

(|S| − 1)|S| ‖x‖S · ‖v‖S , (2.12)

where |S| is the number of elements in S. It is obvious that |S| > 1 according to
the definition of S. For another thing,

2α
∑
i,j∈S
〈vi(t)− vj(t),

∑
l 6∈S

[ψ(ril)(vl(t)− vi(t))− ψ(rjl)(vl(t)− vj(t))]〉

= − α
∑

i,j∈S,l 6∈S

(ψ(ril) + ψ(rjl)) · ‖vi(t)− vj(t)‖2S

+ α
∑

i,j∈S,l 6∈S

〈vi(t)− vj(t), (ψ(ril)− ψ(rjl))(vl(t)− vj(t))〉

+ α
∑

i,j∈S,l 6∈S

〈vi(t)− vj(t), (ψ(ril)− ψ(rjl))(vl(t)− vi(t))〉

≤ 2α
∑

i,j∈S,l 6∈S

〈vi(t)− vj(t), (ψ(ril)− ψ(rjl))(vl(t)− vi(t))〉

≤ 2αL
∑

i,j∈S,l 6∈S

‖vi(t)− vj(t)‖S · ‖xi(t)− xj(t)‖S · ‖vl(t)− vi‖

≤ 4αLM(N − |S|)
∑
i,j∈S

‖vi(t)− vj(t)‖S · ‖xi(t)− xj(t)‖S .

(2.13)

Using the Cauchy-Schwarz inequality and noting the fact that∑
i,j∈S

‖vi(t)− vj(t)‖S · ‖xi(t)− xj(t)‖S

2

≤(|S| − 1)|S|
∑
i,j∈S

‖vi(t)− vj(t)‖2S · ‖xi(t)− xj(t)‖2S ,
(2.14)

we have a bound 4αLM(N − |S|)
√

(|S| − 1)|S| ‖x‖S · ‖v‖S of (2.13). Hence,

I ≤ −2α|S|ψ(‖x‖S) · ‖v‖2S + 4αNLM
√

(|S| − 1)|S| ‖x‖S · ‖v‖S . (2.15)

Similarly, we consider II below. Combining (1.4) and II, we have

II = 2
∑
i,j∈S

〈
vi(t)− vj(t),

∑
l∈S

+
∑
l 6∈S

 ‖xi − xl‖ −R
‖xi − xl‖

(xl(t)− xi(t))

〉

− 2
∑
i,j∈S

〈
vi(t)− vj(t),

∑
l∈S

+
∑
l 6∈S

 ‖xj − xl‖ −R
‖xj − xl‖

(xl(t)− xj(t))

〉

≤ 4
∑
i,j∈S

‖vi(t)− vj(t)‖

∑
l∈S

+
∑
l 6∈S

 ‖xl(t)− xi(t))‖,
(2.16)
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where we used the Cauchy-Schwarz inequality again. Assisted by the following
auxiliary inequality, ∑

i,j,l∈S

‖vi(t)− vj(t)‖ · ‖xl(t)− xi(t)‖

2

≤ C1
|S|(C

1
|S|−1)2

∑
i,j,l∈S

‖vi(t)− vj(t)‖2 · ‖xl(t)− xi(t)‖2

≤ |S|3(|S| − 1)2‖x(t)‖S · ‖v(t)‖S ,

(2.17)

one can be got that

II ≤ 4(|S| − 1)|S|
√
|S| ‖x‖S · ‖v‖S + 4(N − |S|)

√
(|S| − 1)|S| xM · ‖v‖S . (2.18)

Hence, reviewing (2.9) and the above analysis yields

d‖v‖2S
dt

≤− 2α|S| · ψ(‖x‖S)‖v‖2S

+ 4
(
αNLM

√
2(|S| − 1)|S|+ (|S| − 1)|S|

√
|S|
)
‖x‖S · ‖v‖S

+ 4(N − |S|)
√

(|S| − 1)|S| xM · ‖v‖S .

(2.19)

For convenience, let c0 := α|S|, c1 := 2
(
αNLM

√
2(|S| − 1)|S|+ (|S| − 1)|S|

√
|S|
)

and c2 := 2(N − |S|)
√

2(|S| − 1)|S| · xM , further, it follows that

d‖v(t)‖S
dt

≤ −c0ψ(‖x(t)‖S)‖v(t)‖S + c1‖x(t)‖S + c2, (2.20)

where c0 > 0, c1 > 0, c2 > 0. Applying (2.8) to (2.20) produces

d‖v(t)‖S
dt

≤− c0ψ(‖x(t)‖S)‖v‖S + c1‖x(t)‖S + c2

≤− c0 ψ(‖x(t)‖S)

(
−d‖x(t)‖S

dt

)
+ c1‖x(t)‖S + c2.

(2.21)

And integrating both sides of (2.21) from 0 to t(t ∈ [0, a)), we obtain

‖v(t)‖S − ‖v(0)‖S ≤ c0
∫ ‖x(t)‖S

‖x(0)‖S
ψ(r)dr + c1

∫ t

0

‖x(θ)‖Sdθ + c2

∫ t

0

dθ,

that is,

c0

∫ ‖x(0)‖S

‖x(t)‖S
ψ(r)dr ≤ ‖v(0)‖S − ‖v(t)‖S +

∫ t

0

c1‖x(θ)‖Sdθ + c2a. (2.22)

The right end of (2.22) is bounded as t→ a− by Proposition 2.1, while

lim
t→a−

∫ ‖x(0)‖S

‖x(t)‖S
ψ(r)dr =

∫ ‖x(0)‖S

0

ψ(r)dr = +∞.

This yields a contradiction. Hence, ||xi(t)−xj(t)|| > 0 for t ≥ 0, i, j ∈ {1, 2, · · · , N},
i 6= j, i.e. collision avoidance can be achieved.
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Corollary 2.1. Under the conditions of the Theorem 2.1, then the existence and
uniqueness of the global solution to system (1.3)-(1.5) can be guaranteed.

Proof. Let ϑ be the maximal time when the local solution can be took in [0, ϑ).
We claim that ϑ = +∞. If not, suppose that ϑ < +∞, then there exists i 6= j ∈
{1, 2, · · · , N} such that rij(t) = ‖xi(t) − xj(t)‖ → 0 as t → ϑ− , which implies
that limt→ϑ− ψ(rij(t)) = +∞ and the right hand of the second equation of (1.10)
is infinite as t → ϑ−. Nevertheless, as a direct application of Proposition 2.1 and

Theorem 2.1, we can get the fact that
∣∣∣dvi(t)dt

∣∣∣ for all i ∈ {1, 2, · · · , N} and t ≥ 0 is

bounded. This yields a contradiction.

3. Convergence to a flock

The Lyapunov function approach is developed to get the asymptotic convergence
results of System (1.3).

Theorem 3.1. Suppose ψ(·) satisfy the Assumption 1.1. Let {xi(t), vi(t)}, i ∈
{1, 2, · · · , N} be the solution to (1.3)-(1.5). If ‖xi0 − xj0‖ > 0 for all i 6= j, then
this system converges to a flock, that is, sup0≤t<+∞ ||xi(t) − xj(t)|| ≤ xM and
limt→+∞ ||vi(t) − vj(t)|| = 0 for all i, j ∈ {1, 2, · · · , N} and i 6= j, where xM is
expressed in Proposition 2.1.

Proof. Consider System (1.3)-(1.5), it has been obtained that sup0≤t<+∞ ||xi(t)−
xj(t)|| ≤ xM := R+

√
2Q(0) in Proposition 2.1. We next show that limt→+∞ ||vi(t)−

vj(t)|| = 0 for all i, j ∈ {1, 2, · · · , N}. We just need to prove that limt→+∞ ‖v̂i(t)‖ =
0 for i ∈ {1, 2, · · · , N} for System (1.10).

Take Q(t), which is defined by (2.2), as a candidate Lyapunov function V (t)
of the System (1.10). Clearly, V (t) is a continuous and positive definite function.
Since ψ(·) is non-increasing and r̂ij(t) = rij(t) ≤ xM for all i, j ∈ {1, 2, · · · , N}
and t ≥ 0, we have ψ(r̂ij(t)) ≥ ψ(xM ) for t ≥ 0, further,

dV

dt

∣∣∣∣
(1.10)

= −α
2

N∑
i,j=1

ψ(r̂ij)‖v̂j(t)− v̂i(t)‖2

≤ −α
2
ψ(xM )

N∑
i,j=1

‖v̂j(t)− v̂i(t)‖2

= −αNψ(xM )‖v̂i(t)‖2.

(3.1)

Subsequently, integrating both sides of (3.1) from 0 to t, we have

αNψ(xM )

∫ t

0

||v̂i(s)||2ds ≤ V (0)− V (t) ≤ V (0),

which means
∫ t

0
‖v̂i(s)‖2ds ≤ V (0)

αNψ(xM ) for t ≥ 0. Furthermore, let t tend to +∞,

thus
∫ +∞

0
‖v̂i(s)‖2ds has bound V (0)

αNψ(xM ) . Moreover, according to Proposition 2.1

and Cauchy-Schwarz inequality, we obtain that
∣∣∣d‖v̂i(t)‖2dt

∣∣∣ is bounded for t > 0 due

to the following fact.∣∣∣∣d‖v̂i(t)‖2dt

∣∣∣∣ =

∣∣∣∣2〈v̂i(t), dv̂i(t)

dt

〉∣∣∣∣ ≤ 2‖v̂i(t)‖ · ‖ ˙̂vi(t)‖.
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It means that ‖v̂i(t)‖2 is uniformly continuous on (0,+∞). Due to the Barbalat
Lemma in [12], we have

lim
t→+∞

||v̂i(t)||2 = lim
t→+∞

||vi(t)− vc(0)||2 = 0 for all i ∈ {1, 2, · · · , N}.

Therefore, limt→+∞ ||vi(t)|| = vc(0) for i ∈ {1, 2, · · · , N} for System (1.3), further,
limt→+∞ ||vi(t)− vj(t)|| = 0 for i, j ∈ {1, 2, · · · , N} and the proof is complete.

Remark 3.1. Proposition 2.1 and Theorem 3.1 show that the flock radius is deter-
mined by the initial energy of System (1.3) and the preset relative distance between
agents R. The asymptotic flocking velocity is exactly the average velocity of this
system at the initial moment. Therefore, the appropriate R and initial configura-
tions can be set so that the system is controlled within a certain range and reaches
the expected synchronization velocity.

4. Numerical Simulation

In Section 3 the theoretical results of the asymptotic flocking of System (1.3) have
been established. In this section we illustrate the above analysis with several nu-
merical simulations and explore other possible dynamics behavior of System (1.3).

In all simulation experiments, we set the communication rate ψ(r) = r−1 that
satisfies the Assumption 1.1. The initial positions and velocities are determined ran-
domly from the interval [0, 10] and [0, 1] respectively, and the initial position satisfy
||xi(0) − xj(0)|| > 0 for i 6= j, i, j ∈ {1, 2, · · · , N}. We will present two graphs to
characterize the ordered flocking behavior, which is the velocity convergence and
the equilibrium configuration of all agents.

Notice that the initial conditions of each experiment are randomly generated.
Therefore, for a fixed system, the equilibrium configuration will be different through
repeated experiments with random initial data.

Below we consider the cases of N = 5 and N = 10. It can be seen intuitively from
Figure 1 to Figure 4 that under the conditions of Proposition 2.1 and Theorem 3.1,
the velocity of System (1.3) will be synchronized and all agents will be controlled
within a certain range.

0 50 100 150 200
0.0

0.5

1.0

1.5

Figure 1. Trajectories of the velocities of the 5 agents with α = 0.2, R = 5.
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Figure 2. The equilibrium configurations have the following two forms: (a): the five particles at the
apex of the regular pentagon; (b): all agents are distributed at the four vertices of a square and its
center.
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Figure 3. Trajectories of the velocities of the 10 particles with α = 0.1, R = 5.
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Figure 4. The pictures show the equilibrium configurations may have two cases: (a): nine agents at
the vertices of the regular hexagon and one particle at its center; (b): eight agents are distributed at the
vertices of the regular octagon to form an outer ring; the remaining ones are stably and evenly located
inside the outer ring eventually.
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5. Conclusions

A flock model with the singular communication rate and extra interaction items is
considered in this paper. Some sufficient conditions have been established to the
realization of obstacle avoidance and asymptotic flocking. Particularly, we present
a rigorous theoretical proof of collision avoidance between any two agents.

Since the speed of information transmission is limited and each agent requires
a certain amount of time for information processing, time delay is unavoidable and
should be considered in modeling, which is more practical. Therefore, the future
work is to concentrate on the impact of these delay on the results of this paper.
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