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GEOMETRICAL ANALYSIS OF A PEST
MANAGEMENT MODEL IN FOOD-LIMITED

ENVIRONMENTS WITH NONLINEAR
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Abstract In this paper, a nonlinear impulsive state feedback control system
is proposed to model an integrated pest management in food-limited environ-
ments. In the system, impulsive feedback control measures are implemented
to control pests on the basis of the quantitative state of pests. Mathematical-
ly, an intuitive geometric analysis is used to indicate the existence of periodic
solutions. The stability of periodic solutions is investigated by using Analogue
of Poincaré Criterion. At last, numerical simulations are given to verify the
theoretical analysis.
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1. Introduction and model formulation

Agricultural pests have always threatened agricultural production, and large-scale
pests may even cause crop outbreaks. Farmers and agricultural scientists have been
looking for an effective way to control pests. The advent of chemical pesticides and
their wide range of using effectively solved the problem of insect pests in a short

†the corresponding author. Email address:zhangtongqian@sdust.edu.cn (T.
Zhang)

1College of Mathematics and Systems Science, Shandong University of Science
and Technology, Qingdao 266590, China

2State Key Laboratory of Mining Disaster Prevention and Control Co-founded
by Shandong Province and the Ministry of Science and Technology, Shandong
University of Science and Technology, Qingdao 266590, China

3Fundamental Science Department, North China Institute of Aerospace Engi-
neering, Langfang 065000, China
∗T. Zhang was supported by Shandong Provincial Natural Science Founda-
tion of China (No. ZR2019MA003), SDUST Research Fund (No. 2014TD-
JH102) and Scientific Research Foundation of Shandong University of Science
and Technology for Recruited Talents. T. Xu and J. Wang was supported
by SDUST Innovation Fund for Graduate Students (No. SDKDYC190119).
Z. Jiang was supported by National Natural Science Foundation of China
(Nos. 11801014 and 11875001), Natural Science Foundation of Hebei Province
(No. A2018409004), Hebei province university discipline top talent selection
and training program (SLRC2019020) and Talent Training Project of Hebei
Province.

http://jaac.ijournal.cn
http://dx.doi.org/10.11948/20190032


2262 T. Zhang, T. Xu, J. Wang, Y. Song, & Z. Jiang

period of time. However, the evidence shows that with the abuse of pesticides,
many problems have begun to emerge, such as the contamination of water and soil
caused by the residues of pesticides, the resistance of pests, etc [2, 12,22,45].

Integrated Pest Management (IPM) is a comprehensive technique for controlling
pests using chemical, physical, biological, agricultural and cultural methods [1,37].
The purpose of IPM is to control the number of pests within a certain range, instead
of eradicating pests. Because it can control pests and protect the environment to
the greatest extent, IPM has been welcomed and paid much attention by many
researchers [20, 27, 32, 35, 39, 43]. One commonly used chemical control method is
spraying pesticides, another commonly used biological control method is releasing
natural enemies that are cultivated in the laboratory. The implementation of arti-
ficial intervention measures will lead to rapid changes in the number of biological
populations. This phenomenon can be characterized by impulsive differential e-
quations [6, 7, 9, 21, 24, 26, 33, 52, 56]. To understand the evolutionary relationship
between pests and natural enemies under artificial control strategies in IPM, based
on the predator-prey model [15, 16, 30, 31, 49, 57, 58], Liu et al [23] proposed a two
dimensional IPM model with pulses as follows,

u1
′ = u1(r − au1 − bu2),

u2
′ = u2(cu1 − u2),

}
t 6= nT,

∆u1 = −p1u1,

∆u2 = −p2u2 + τ,

}
t = nT,

(1.1)

where u1 and u2 represent the density or number of pests and natural enemies, re-
spectively. ∆ui represent the variation of ui and is defined as ui(t

+)−ui(t), i = 1, 2.
p1 and p2 are kill rate of the pesticide for pests and natural enemies, respectively.
τ represents the release amount of natural enemies for each impulsive period T.

However, in actual pest management, considering the cost, efficiency and oper-
ability, generally only the number of pests runs up to a certain threshold, and IPM
is implemented to kill pests. In other words, we determine whether to implement
integrated management based on the number or density of pests. This process can
be described by a state feedback control system [4,18,25,29,44,46,48], because the
state of the system variable has changed dramatically after each feedback control,
this feedback control is also called impulsive state feedback control which has been
extensively used to explain the implementation of control measures in population
models [14,19,51,53], chemostat models [11,41,50], turbidostat models [47,55] and
epidemic models [8, 10,28,38,54].

In [40], Tang et al. constructed an IPM model as follows,
u′1 = u1(a− bu2),

u′2 = u2(cu1 − d),

}
u1 6= ET,

∆u1 = −pu1,

∆u2 = τ,

}
x = ET,

(1.2)

the authors assumed that IPM is carried out to kill the pest once the number of
pests reach a certain threshold ET. They proved that system (1.2) has one order one
periodic solution by constructing Poincaré map. Zhang et al. [51] improved model
(1.2) by adopting logistic growth for the pest population. However, in the process
of investigating the population growth of Daphnia magna, Smith [36] founded that
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the hypothesis of linear average growth rate is not reasonable and proposed a food
limited population growth model with the form

x′(t) = rx(t)
K − x(t)

K + r
ex(t)

. (1.3)

In the model (1.3), food is mainly used to keep the survival and growth of the
population. The model is proposed based on the assumption that the population
is no longer growing when it reaches saturation, and in this case, food is only used
to keep the survival of the population. Obviously, equation (1.2) is a generalized
logistic equation.

Thus based on the hypothesis of [3, 36] and previous works [42, 51], we propose
an impulsive state feedback control system to model an integrated pest management
in limited food environment as follows,


x′ = rx K−x

K+ r
ex
− βxy,

y′ = λβxy − dy,

}
x 6= h,

∆x = −p(x)x,

∆y = −qy + τ,

}
x = h,

where x and y represent the density or number of pests and natural enemies, re-
spectively. 0 ≤ q < 1 represents kill rate of the pesticide for natural enemies. τ ≥ 0
is the release amount of natural enemies. Because of the limited resources and
the development of insect resistance to insecticides and other factors, insecticides
have saturation effect on pests. To characterize this saturation effect of insecticides
on the pests, the proportion of each killed pests p can be changed as a saturation

function dependent pest populations, namely, p(x(t)) = Pmaxx(t)
x(t)+θ , and Pmax ∈ [0, 1)

is the maximal killing rate, θ is the half saturation constant [42]. The meaning
of parameters r,K, e are same as equation (1.1). Detailed biological explanations
of system (1.2), we refer to reference [23, 42, 51]. For the sake of simplicity, let
r = a, rK = b, r

Ke = c, we get the model as follows,


x′ = xa−bx1+cx − βxy,
y′ = λβxy − dy,

}
x 6= h,

∆x = −p(x)x,

∆y = −qy + τ,

}
x = h.

(1.4)

Considering the biological meaning, we will consider the solution of system (1.4) in
region R2

+ = {(x, y)|x ≥ 0, y ≥ 0}.
The organization of this paper is as follows. We qualitatively analyze the system

(1.4) neglecting nonlinear pulsed effect in Sect. 2. And in Sect. 3, we consider the
existence and stability of order one periodic solution of system (1.4). In Sect. 4,
numerical simulations are carried out to illustrate the analytical results. We give a
brief conclusion in Sect. 5.
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2. Equilibria stability analysis of the system ne-
glecting impulsive effect

Let pmax, q, τ = 0 in system (1.4), we obtain a system neglecting impulsive effect in
the form of {

x′ = xa−bx1+cx − βxy,
y′ = λβxy − dy.

(2.1)

By solving {
xa−bx1+cx − βxy = 0,

λβxy − dy = 0,
(2.2)

we know that system (2.1) always have a trivial equilibrium A(0, 0) and a semi-
trivial equilibrium B(a/b, 0), if and only if (H1) : λβa > bd holds, system (2.1) also
has a positive equilibrium E(x∗, y∗), where x∗ = d

λβ , y
∗ = a−bx∗

β(1+cx∗) .

Let (H1) : λβa < bd, the Jacobian of the equilibria has the following form

J =

 a−2bx−bcx2

(1+cx)2 − βy −βx

λβy λβx− d

 .

At A(0, 0), we have

J(A) =

a 0

0 −d

 ,

obviously, A(0, 0) is a saddle point. At B(a/b, 0), we have

J(A) =

 −ab
ac+b −β ab

0 λβ ab − d

 ,

obviously, if (H1) holds, then B(a/b, 0) is a saddle point and if H1 holds, then
B(a/b, 0) is a stable node.

And at E(x∗, y∗), we get

J(E∗) =

− (b+ac)x∗

(1+cx∗)2 −βx
∗

λβy∗ 0

 .

Let A = (b+ac)x∗

(1+cx∗)2 , B = λβ2x∗y∗, the two eigenvalues λ1, λ2 of J(E∗) satisfy

λ1 + λ2 = −A < 0,

λ1λ2 = B > 0.

Obviously, E∗ is locally asymptotically stable. Moreover, let ∆ = A2 − 4B, and
when ∆ < 0, E(x∗, y∗) is a stable focus.

Let H2 : ∆ < 0, then we have the following theorem.

Theorem 2.1. If (H1) and (H2) hold, then E(x∗, y∗) is a stable focus.
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Figure 1. The solution of system (2.1) is bounded.

Theorem 2.2. The solution of system (2.1) is ultimately bounded.

Proof. Given the initial conditions

x(t0) = x0 > 0, y(t0) = y0 > 0. (2.3)

Let (x(t), y(t)) be a solution of system (2.1) satisfied initial conditions (2.3). We
will build a area Ω with a boundary such that (x(t), y(t)) ∈ Ω for initial point
(x(t0), y(t0)) and t > T, where T > 0 is large (see Figure 1). Since point B(a/b, 0)
ia a saddle point, for line Γ1 : x− a/b = 0 passing through B, we have

dΓ1

dt

∣∣∣∣
Γ1=0

= x
a− bx
1 + cx

− βxy
∣∣∣∣
Γ1=0

= −β a
b
y < 0.

Thus the line Γ1 is a segment without contact and orbit of system (2.2) goes across
it from the right. On the other hand, define in the first quadrant:

Γ2 : y + λx−M = 0,Γ3 : y −M +
d

β
= 0.

Then we have

dΓ2

dt
|Γ2=0 =

[
y(λβx− d) + λx

(
a− bx
1 + cx

− βy
)]∣∣∣∣

Γ2=0

= λx

(
a− bx
1 + cx

+ d

)
−Md,

dΓ3

dt
|Γ3=0 = y(λβx− d).

Thus, we have dΓ2/dt < 0 for d/λβ < x < a/b and dΓ3/dt < 0 for 0 < x < d/λβ,
here M is large enough. So there exists a area Ω with a boundary being composed
of x = 0, y = 0,Γ1Γ2 and Γ3 such that (x(t), y(t)) ∈ Ω for initial point (x(t0), y(t0))
and t > T, where T > 0 is large. This completes the proof.

Theorem 2.3. If (H1) and (H2) hold, then E(x∗, y∗) is global asymptotically stable.

Proof. Construct Dulac function B = 1
xy , it is easy to check

D =
∂(PB)

∂x
+
∂(QB)

∂y
= − ac+ b

(1 + cx)2y
< 0.



2266 T. Zhang, T. Xu, J. Wang, Y. Song, & Z. Jiang

By the Bendixson-Dulac theorem [13], we have there is no closed orbit around E.
Then by theorems 2.1 and 2.2, E is global asymptotically stable.

3. Dynamics analysis of the system with impulsive
effect

According to Definition 2.1 in Chen et al. [5, 34], system (1.4) constructs a semi-
continuous dynamical system (Ω, f, ϕ,M), where (x, y) ∈ Ω ⊂ R2

+, M = {(x, y)|x =
h} is the impulse set. f = f(p, t) is the semi-continuous dynamical system mapping
with initial point p = (x0, y0) /∈ M. The continuous function ϕ : M → N is called
impulse mapping, N = {(x, y)|x = (1− Pmaxh/(h+ θ))h, 0 ≤ y ≤ τ} is the phase
set. Obliviously L : y = a−bx

β(1+cx) and Y -axis are two X-nullclines, and L′ : x = d
λβ

and X-axis are two Y -nullclines. Next, we investigate the existence of order one
period solution [5] by using method of successor functions [34], as well as the stability
of periodic solutions by using Analogue of Poincaré Criterion [17] .

3.1. The existence of periodic solutions

According to the position of the impulse set and the phase set, we have the following
theorems.

Theorem 3.1. If h ≤ d
λβ , then system (1.4) has an order one periodic solution.

Proof. For the case h = d
λβ , the impulse set and the Y -nullcline x = d

λβ overlap.

Let A (Ax, Ay) denote the intersection of N and L. We consider the orbit tangent
to the point A, denoted as L1. Assume L1 intersects with M at point A1, whose
coordinate is denoted as A1(A1x, A1y). Since A1 ∈ M, the impulse set, then there
exists A+

1 ∈ N, such that I(A1) = A+
1 , whose coordinate is denoted as (A+

x, A
+
y),

according to the definition of the successor function given in [34], if we denote the
successor function as F, then we have F (A) = A+

1 y − Ay. Consider the sign of

A+
1 y −Ay, there have three cases to be discussed.

Case a, A+
1 y − Ay = 0, i,e., the point A and it’s successor point A+

1 overlap,

obviously, according to the definition of the order one period solution given in [5],

ÂA1 constructs an order one periodic solution (see Figure 2(a)).
Case b, A+

1 y − Ay < 0, i,e., the point A is above it’s successor point A+ (see

Figure 2(b)). In this case, we have F (A) < 0. By Theorem 3.2 in [5], to prove the
existence of periodic solution, we should find a point P ∈ N such that F (P ) > 0.
For this purpose, we can choose a point S ∈ N whose coordinate is denoted as
(Sx, Sy). Consider the orbit pass by the point S, denoted as L2. Let Sy is large
enough, the L2 can intersect with N twice. The second intersection with N is
denoted as B, and the intersection of L2 with the impulsive set M is denoted as B1.
Since B1 ∈ M, the impulse set, then there exists B+

1 ∈ N, such that I(B1) = B+
1 ,

i.e., B+
1 is the successor point of B. If the coordinate of B, B1 and B+

1 is denoted
as and (Bx, By), (B1x, B1y) and (B1

+
x, B1

+
y) respectively, then we have F (B) =

B+
1 y − By. Because Sy is large enough, then By can be small enough such that

F (B) = B+
1 y −By > 0. Thus our aim has been achieved.

Case c, A+
1 y − Ay > 0, i,e., the point A is below it’s successor point A+ (see

Figure 2(c)). In this case, we have F (A) > 0. We consider the orbit L2. Since Sy
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Figure 2. Periodic solution for the case in Theorem 3.1

is large enough, then B1 is below the point A1, thus B+
1 is also below the point

A+
1 , this leads to F (S) = B+

1 y −Sy < 0. Thus by Theorem 3.2 in [5], we know that

system (1.3) produces an order one periodic solution.

For the case h < d
λβ , similar argument can continue, here we omit it.

This completes the proof.

Theorem 3.2. If 0 < (1− Pmaxh/(h+ θ))h < d/λβ < h < a/b, system (1.3) has
an order one periodic solution.

Proof. As discussed in Theorem 3.1, we should find two points point P1, P2 ∈ N
satisfying F (Q1)f(Q2) < 0. First, we claim that there must be a trajectory L0

tangent to x = h at point H. Let ρ ≥ 0 represents the number of the intersections
of trajectory L0 and the phase set N. we have two cases to discuss.

Case a, if 0 ≤ ρ ≤ 1, there exists a trajectory L1 beginning from A and tan-
gent to N at a point A(Ax, Ay). The trajectory L1 intersects with M at the point
A1(A1x, A1y). Since M is the impulse set, then there exists A+

1 ∈ N, such that
ϕ(A1) = A+

1 , i.e., A+
1 (A1

+
x, A1

+
y) is the successor point of A. Then according to

the position of A and A+, we have two subcases here, (a1): A1
+
y −Ay ≤ 0 (please

see Figure 3(a)), and (a2): A1
+
y −Ay > 0 (see Figure 3(b)). Then as a similar dis-

cuss in the proof of Theorem 3.1, we can see system (1.4) has an order one periodic
solution.

Case b, if ρ = 2, i.e., the trajectory L0 intersect phase set twice, we denote the
intersection point as A′ and B′, respectively. Denote the coordinate of A′ and B′
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Figure 3. Periodic solution for the case in Theorem 3.2

as (A′x, A
′
y) and (B′x, B

′
y), respectively. Without loss of generality, we assume point

A′ is above point B′, i.e., A′y > B′y. Since the trajectory L0 tangent to the impulse
set M at point H, then there exists A′+ ∈ N, such that I(H) = A′+, i.e., A′+ is the
successor point of A′ or B′. According to the sign of A′+y −A′y and A′+y −B′y < 0,
we have two subcases to be discussed as well, case (b1) (please see Figure 3(c))
where A+

y −Ay > 0 and (b2)(please see Figure 3(d)) where A′+y−B′y < 0. As what
we discussed in the proof of Theorem 3.1, we can also show that system (1.4) has
an order one periodic solution.

Remark 3.1. If
(

1− Pmaxh
h+θ

)
h > d

λβ , we can still prove the system (1.4) has an

order one periodic solution. But in this case, under the control measures, the popu-
lation of the pests keep a higher number(> d

λβ ), however, by the globally asymptotic

stability of E(x∗, y∗), such control measures do not have practical significance.

3.2. The stability of periodic solutions

Theorem 3.3. Consider a periodic solution (x, y) = (µ(t), γ(t)) of system (1.4), let∏
(A0, t) be the orbit beginning from A0(µ(0), γ(0)), where µ(0) =

(
1− Pmax

h
h+θ

)
h,

then if ∣∣∣∣∣∣∣
a−b(1−Pmax

h
h+θ )h

1+c(1−Pmax
h
h+θ )h

− βγ0

a−bh
1+ch − β

γ0−τ
1−q

γ0 − τ
γ0

∣∣∣∣∣∣∣ < 1,
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then the periodic solution passing through point (h, γ(T )) of system (1.4) is orbitally
asymptotically stable.

Proof. Consider an order one orbit starting from C0, when the orbit touch to the
impulse set ( the intersection and the time are denoted by C1 and T, respectively),
a pulse happens at point C1, the phase point is denoted by C+

1 (µ(T+), γ(T+).
Then we obtain C1 = f(C0, T ), C0 = C+

1 = ϕ(C1), and by the third and fourth

equations of system (1.4), we have µ(T+) =
(

1− Pmaxh
h+θ

)
µ(T ) = µ(0), γ(T+) =

(1− q)γ(T ) + τ = γ(0). Let

Γ(x, y) = x(t)a−bx(t)
1+cx(t) − βx(t)y(t),

Σ(x, y) = y(λβx− d),

Θ1(x, y) = −Pmaxx
x+θ x,

Θ2(x, y) = −qy + τ,

Φ(x, y) = x− h.

By a direct calculation, we get

∂Θ1

∂x = −Pmax
x(x+2θ)
(x+θ)2 ,

∂Θ1

∂y = 0,
∂Θ2

∂x = 0,
∂Θ2

∂y = −q,
∂Φ
∂x = 1,
∂Φ
∂y = 0,

and ∫ T

0

∂Γ

∂x
dt =

∫ T

0

(
a− bx
1 + cx

− βy − (ac+ b)x

(1 + cx)2

)
dt

= ln

(
µ1

µ0

)
−
∫ T

0

(ac+ b)x

(1 + cx)2
dt,∫ T

0

∂Σ

∂y
dt =

∫ T

0

(λβx− d)dt

= ln

(
γ1

γ0

)
.

Then, we have

∆1 =
Γ+ ·

(
∂Θ2

∂y
∂Φ
∂x −

∂Θ2

∂x
∂Φ
∂y + ∂Φ

∂x

)
Γ ·
(
∂Φ
∂x

)
+ Σ ·

(
∂Φ
∂y

)
+

Σ+ ·
(
∂Θ1

∂x
∂Φ
∂y −

∂Θ1

∂y
∂Φ
∂x + ∂Φ

∂y

)
Γ ·
(
∂Φ
∂x

)
+ Σ ·

(
∂Φ
∂y

)
=

Γ(µ(T+), γ(T+))(1− q)
Γ(µ(T ), γ(T ))
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=
Σ(µ0, γ0)(1− q)
Γ(µ(T ), γ(T ))

=

(
1− Pmax

h
h+θ

)
h

(
a−b(1−Pmax

h
h+θ )h

1+c(1−Pmax
h
h+θ )h

− βγ0

)
(1− q)

h(a−bh1+ch − β
γ0−τ
1−q )

=

(
1− Pmax

h
h+θ

)(
a−b(1−Pmax

h
h+θ )h

1+c(1−Pmax
h
h+θ )h

− βγ0

)
(1− q)

a−bh
1+ch − β

γ0−τ
1−q

.

Thus,

ω2 = ∆1 exp

{∫ T

0

(
∂Γ

∂x
+
∂Σ

∂y

)
dt

}

=

(
1− Pmax

h
h+θ

)(
a−b(1−Pmax

h
h+θ )h

1+c(1−Pmax
h
h+θ )h

− βγ0

)
(1− q)

a−bh
1+ch − β

γ0−τ
1−q

exp

{
ln

(
µ1

µ0

)
+ ln

(
γ1

γ0

)
−
∫ T

0

(ac+ b)x

(1 + cx)2
dt

}

=

(
1− Pmax

h
h+θ

)(
a−b(1−Pmax

h
h+θ )h

1+c(1−Pmax
h
h+θ )h

− βγ0

)
(1− q)

a−bh
1+ch − β

γ0−τ
1−q

µ1

µ0

γ1

γ0
exp

{
−
∫ T

0

(ac+ b)x

(1 + cx)2
dt

}

=

(
1− Pmax

h
h+θ

)(
a−b(1−Pmax

h
h+θ )h

1+c(1−Pmax
h
h+θ )h

− βγ0

)
(1− q)

a−bh
1+ch − β

γ0−τ
1−q

h(
1− Pmax

h
h+θ

)
h

γ0−τ
1−q

γ0
exp

{
−
∫ T

0

(ac+ b)x

(1 + cx)2
dt

}

=

a−b(1−Pmax
h
h+θ )h

1+c(1−Pmax
h
h+θ )h

− βγ0

a−bh
1+ch − β

γ0−τ
1−q

γ0 − τ
γ0

exp

{
−
∫ T

0

(ac+ b)x

(1 + cx)2
dt

}

<

a−b(1−Pmax
h
h+θ )h

1+c(1−Pmax
h
h+θ )h

− βγ0

a−bh
1+ch − β

γ0−τ
1−q

γ0 − τ
γ0

.

Hence, by Analogue of Poincaré Criterion [17], the periodic solution is orbitally
asymptotically stable if∣∣∣∣∣∣∣

a−b(1−Pmax
h
h+θ )h

1+c(1−Pmax
h
h+θ )h

− βγ0

a−bh
1+ch − β

γ0−τ
1−q

γ0 − τ
γ0

∣∣∣∣∣∣∣ < 1.

This completes the proof .
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4. Numerical simulations

In this section, to verify the existence of periodic solution of the model, we will give
some numerical simulations. We set the basic parameters as a = 1, b = 1, c = 1, β =
0.5, λ = 1.6, Pmax = 0.9, θ = 0.2, q = 0.4, and get the system as follows,

x′(t) = x(t) 1−x(t)
1+x(t) − 0.5x(t)y(t),

y′(t) = 0.8x(t)y(t)− 0.4y(t),

}
x 6= h,

∆x(t) = − 0.9x(t)
x(t)+0.2x(t),

∆y(t) = −0.4y(t) + τ,

}
x = h.

(4.1)

For the system neglecting impulsive effect, by simple calculations, we get the positive
equilibrium E∗(0.5, 0.667). The direction field shows that system has a stable focus,
please see Figure 4. It can be seen from Figure 4 that the number of pests and
natural enemies is finally stable at E∗(0.5, 0.667).

Figure 4. System (4.1) has a stable focus.

Let the initial value be (0.2, 0.2), following the theoretical results, we have the
following cases.

Case I: Let h = 0.5, by adjusting the release amount of natural enemies, there
will be two sub-cases.

Case I(a): Supplementing (releasing) a larger number of natural enemies (for
example τ = 0.2), It can be seen from the red curve in Figure 5(b) and Figure
5(c) respectively, that the number of natural enemies oscillates from 0.15 to 0.342
and the number of pests oscillates from 0.1786 to 0.5. Moreover, this oscillation
is periodic, Figure 5(a) shows that system (4.1) produces an order one periodic
solution, see the red curve in Figure 5(a).

Case I(b): Supplementing (releasing) a small number of natural enemies (for
example τ = 0.1), which allows the number of natural enemies to return to a lower
level under the effect of the pulse, as shown in the green curve in Figure 5(c), the
number of natural enemies oscillate from 0.15 to 0.342. Due to the effect of the
pulse, the number of pests oscillates from 0.1786 to 0.5 periodically as shown in the
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green curve in Figure 5(b). The green curve in Figure 5(a) shows that system (4.1)
produces an order one periodic solution.

(a) Phase diagram of x(t) and
y(t). (b) Time series of x(t). (c) Time series of y(t).

Figure 5. Compare of solutions of the system with impulsive effect (red or green curve) and without
impulsive effect(blue curve), where h = 0.5.

Case II: Take a tighter control strategy, for example let h = 0.4 < 0.5, according
to different release amount of natural enemies, we find that the number of natural
enemies oscillate from 0.15 to 0.35 for the case τ = 0.1 (see the green curve in Figure
6(c)) and from 0.15 to 0.35 for the case τ = 0.2 (see the red curve in Figure 6(c)).
And the number of pests oscillates from 0.16 to 0.4 periodically (see Figure 6(b)),
moreover, system (4.1) produces an order one periodic solution, see Figure 5(a), the
red curve is for the case τ = 0.2 and the green curve is for the case τ = 0.1.

(a) Phase diagram of x(t) and
y(t). (b) Time series of x(t). (c) Time series of y(t).

Figure 6. Compare of solutions of the system with impulsive effect (red or green curve) and without
impulsive effect(blue curve), where h = 0.4.

Case III: Take a looser control strategy, for example let h = 0.7. By regulating
τ, we find that pests and natural enemies produce periodic changes in the system
(4.1) , see Figure 7(b) and Figure 7(c) respectively, the red curve is for the case of
τ = 0.2 and the red curve is for the case of τ = 0.1. The number of pests ranges
from 0.21 to 0.7. Moreover, we can clearly see from Figure 7(a) that system (4.1)
produces one order one periodic solution with τ = 0.2 (the red orbit in Figure 7(a))
and τ = 0.1 (the green orbit in Figure 7(a)), respectively.
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(a) Phase diagram of x(t) and
y(t). (b) Time series of x(t). (c) Time series of y(t).

Figure 7. Compare of solutions of the system with impulsive effect (red or green curve) and without
impulsive effect(blue curve), where h = 0.7.

Table 1. The periodic solution of system (4.1) with different parameters

Impulse set Phase set µ The corresponding Figure
x = 0.5 0.1786 0.2 red curve in Figure 5(a)
x = 0.5 0.1786 0.1 green curve in Figure 5(a)
x = 0.4 0.16 0.2 red curve in Figure 6(a)
x = 0.4 0.16 0.1 green curve in Figure 6(a)
x = 0.7 0.21 0.2 red curve in Figure 7(a)
x = 0.7 0.21 0.1 green curve in Figure 7(a)

5. Conclusion

In present paper, a nonlinear impulsive state feedback control system was establish
to model the integrated pest control in a food-limited environments. Impulsive state
feedback control is properly used to describe the change of the number of pests and
natural enemies reduced by human intervention activities in a pest management.
Mathematically, a simple and intuitive geometric analysis is used to indicate the
existence of periodic solutions. The results of the paper show impulsive state feed-
back control plays a good role in the integrated pest management, the pests have
not been eradicated, but been suppressed below the economic threshold level, this
implies we can reduce the usage of pesticide to control the pests.
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