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EVANS FUNCTIONS AND BIFURCATIONS OF
STANDING WAVE FRONTS OF A

NONLINEAR SYSTEM OF REACTION
DIFFUSION EQUATIONS∗

Linghai Zhang

Abstract Consider the following nonlinear system of reaction diffusion equa-

tions arising from mathematical neuroscience ∂u
∂t

= ∂2u
∂x2 + α[βH(u− θ) − u] −

w, ∂w
∂t

= ε(u−γw). Also consider the nonlinear scalar reaction diffusion equa-

tion ∂u
∂t

= ∂2u
∂x2 + α[βH(u − θ) − u]. In these model equations, α > 0, β > 0,

γ > 0, ε > 0 and θ > 0 are positive constants, such that 0 < 2θ < β. In the
model equations, u = u(x, t) represents the membrane potential of a neuron
at position x and time t, w = w(x, t) represents the leaking current, a slow
process that controls the excitation.

The main purpose of this paper is to couple together linearized stability
criterion (the equivalence of the nonlinear stability, the linear stability and the
spectral stability of the standing wave fronts) and Evans functions (complex
analytic functions) to establish the existence, stability, instability and bifur-
cations of standing wave fronts of the nonlinear system of reaction diffusion
equations and to establish the existence and stability of the standing wave
fronts of the nonlinear scalar reaction diffusion equation.

Keywords Nonlinear system of reaction diffusion equations, standing wave
fronts, existence, stability, instability, bifurcation, linearized stability criterion,
Evans functions.
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1. Introduction

1.1. The Mathematical Model Equations

Consider the following nonlinear system of reaction diffusion equations arising from
mathematical neuroscience

∂u

∂t
=
∂2u

∂x2
+ α[βH(u− θ)− u]− w, (1.1)

∂w

∂t
= ε(u− γw). (1.2)

Also consider the nonlinear scalar reaction diffusion equation

∂u

∂t
=
∂2u

∂x2
+ α[βH(u− θ)− u]. (1.3)
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In these model equations, u = u(x, t) represents the membrane potential of a neuron
at position x and time t, w = w(x, t) represents the leaking current, a slow process
that controls the excitation of neuron membrane. The positive constants α > 0,
β > 0, γ > 0, ε > 0 and θ > 0 represent neurobiological mechanisms. The positive
constant θ > 0 represents the threshold for excitation. The function H = H(u− θ)
represents the Heaviside step function, which is defined by H(u−θ) = 0 for all u < θ,
H(0) = 1

2 and H(u − θ) = 1 for all u > θ. When an action potential is generated
across a neuron membrane, Na+ ion activation is considerably faster than K+ ion
activation. The positive constant ε represents the ratio of the activation of Na+ ion
channels over the activation of K+ ion channels. Letting ε = 0 and w = 0, equation
(1.3) may be obtained from system (1.1)-(1.2). See Feroe [5–7], McKean [8–10],
McKean and Moll [11], Rinzel and Keller [12], Rinzel and Terman [13], Terman [14],
Wang [15] and [16] for more neurobiological backgrounds of the model system.

1.2. The Main Difficulty, the Main Purposes and the Main
Strategy

The main purpose of this paper is to accomplish the existence and stability of s-
tanding wave fronts of the nonlinear system of reaction diffusion equations and the
nonlinear scalar reaction diffusion equation. The existence of the standing wave
fronts follow from standard ideas, methods and techniques in dynamical systems.
The stability of the standing wave fronts will be accomplished by coupling togeth-
er linearized stability criterion and Evans functions. The interesting and difficult
points are that the eigenvalue problems obtained by using linearization technique
and the method of separation of variables involve the Dirac delta impulse functions.
This makes it very difficult to establish the equivalence of the nonlinear stability,
the linear stability and the spectral stability of the standing wave fronts. The main
strategy to overcome the difficulty is to use the special structure of the model equa-
tions to reduce the eigenvalue problems to simplified differential equations and to
use the fundamental matrix and the method of variation of parameters to construct
general solutions of the eigenvalue problems. Another very interesting point is that
the parameter ε plays no role in the existence of the standing wave fronts, but it
does play a very important role in the stability of the standing wave fronts. It
is worth of pointing out that the nonlinear system is not a singular perturbation
problem for the existence and stability of the standing wave fronts.

The construction and application of Evans functions to stability analysis of
the standing wave fronts of the nonlinear system of reaction diffusion equations
(1.1)-(1.2) have been open for a long time. This paper aims to provide positive
solutions to the open problems. Mathematically and biologically, these are very
important/interesting problems. We believe that the same ideas also work for the
existence and stability of multiple traveling pulse solutions of system (1.1)-(1.2).

1.3. Previous Related Results

There have been some results on the existence and stability of the standing wave
fronts of the nonlinear system of reaction diffusion equations (1.1)-(1.2). However,
previous proofs on the existence, stability, instability or bifurcations missed a few
key points and that is why their mathematical analysis are not rigorously correct.
Maybe the claimed results are based on numerical simulations for some specific
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parameters.

1.4. The Main Results

Theorem 1.1. (I) Let the positive constants α > 0, β > 0, γ > 0, ε > 0 and θ > 0
satisfy the condition 2(1 + αγ)θ = αβγ. Then there exist two monotone standing
wave fronts (U1,W1) ∈ C1(R) ∩ C2(R− {0}) and (U2,W2) ∈ C1(R) ∩ C2(R− {0})
to the nonlinear system of reaction diffusion equations (1.1)-(1.2). The monotone
standing wave fronts are given explicitly by

U1(x) = θ exp

(√
α+

1

γ
x

)
, on (−∞, 0),

U1(x) =
αβγ

1 + αγ
− θ exp

(
−
√
α+

1

γ
x

)
, on (0,∞);

U2(x) =
αβγ

1 + αγ
− θ exp

(√
α+

1

γ
x

)
, on (−∞, 0),

U2(x) = θ exp

(
−
√
α+

1

γ
x

)
, on (0,∞).

(II) The monotone fronts are stable if γ2ε > 1 and they are unstable if 0 < γ2ε < 1.
The value γ2ε = 1 is a bifurcation point for the monotone standing wave fronts of
system (1.1)-(1.2).
(III) Let the positive constants α > 0, β > 0 and θ > 0 satisfy the condition 2θ = β.
Then there exist two stable monotone standing wave fronts U1 ∈ C1(R)∩C2(R−{0})
and U2 ∈ C1(R) ∩ C2(R − {0}) to the nonlinear scalar reaction diffusion equation
(1.3). The standing wave fronts are given explicitly by

U1(x) = θ exp(
√
αx), on (−∞, 0),

U1(x) = β − θ exp(−
√
αx), on (0,∞);

U2(x) = β − θ exp(
√
αx), on (−∞, 0),

U2(x) = θ exp(−
√
αx), on (0,∞).

2. The Mathematical Analysis and the Proofs of the
Main Results

The main purpose of this section is to accomplish the existence and bifurcations
of the standing wave fronts. We will couple together linearized stability criterion,
Evans functions (complex analytic functions) to accomplish the stability, instability
and bifurcation of the standing wave fronts. The proof of Theorem 1.1 consists of
several steps.

Let 0 < (1 + αγ)θ < αβγ. There exist two stable constant solutions (U,W ) =
(0, 0) and (U,W ) = ( αβγ

1+αγ ,
αβ

1+αγ ).

The proof of Theorem 1.1 consists of several steps.

1. The existence. A standing wave front of (1.1)-(1.2) satisfies the following
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system of differential equations

U ′′ + α[βH(U − θ)− U ]−W = 0,

ε(U − γW ) = 0.

That is

U ′′ −
(
α+

1

γ

)
U + αβH(U − θ) = 0.

Suppose that the increasing standing wave front satisfies the conditions: U < θ on
(−∞, 0), U(0) = θ, U ′(0) > 0 and U > θ on (0,∞). Then the differential equation
reduces to the boundary value problems

U ′′ −
(
α+

1

γ

)
U = 0, on (−∞, 0), U(0) = θ;

U ′′ −
(
α+

1

γ

)
U + αβ = 0, on (0,∞), U(0) = θ.

It is easy to solve these differential equations to find the following explicit solutions
which also satisfy the boundary conditions

U(x) = θ exp

(√
α+

1

γ
x

)
, on (−∞, 0);

U(x) =
αβγ

1 + αγ
+

(
θ − αβγ

1 + αγ

)
exp

(
−
√
α+

1

γ
x

)
, on (0,∞).

Moreover, the solution is continuously differentiable everywhere. The explicit de-
creasing standing wave front may be obtained very similarly. The proof of the
existence of the monotone standing wave fronts of the nonlinear system of reaction
diffusion equations (1.1)-(1.2) is finished. A standing wave front of equation (1.3)
satisfies the differential equation

U ′′ + α[βH(U − θ)− U ] = 0.

The proof of the existence of the monotone standing wave fronts of the nonlinear
scalar reaction diffusion equation (1.3) is very similar and is omitted.

Let us study the stability of the standing wave fronts of the nonlinear system
of reaction diffusion equations (1.1)-(1.2). To keep the mathematical analysis clear,
let us focus on the stability analysis of the increasing front. The stability analysis
of the decreasing front is very similar.

2. The eigenvalue problems. Let (P (x, t), Q(x, t)) = (u(x, t), w(x, t)). Then
system (1.1)-(1.2) becomes

∂P

∂t
=
∂2P

∂x2
+ α[βH(P − θ)− P ]−Q,

∂Q

∂t
= ε(P − γQ).

The standing wave front (U(x),W (x)) is a stationary solution of this system. Lin-
earizing the nonlinear system about the standing wave front yields

∂p

∂t
=
∂2p

∂x2
+ α[βδ(U − θ)p− p]− q,

∂q

∂t
= ε(p− γq),
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where δ = δ(x) represents the Dirac delta impulse function, defined by∫
R
δ(x− y)ψ(y)dy = ψ(x),

δ(x) = 0, for all x 6= 0, δ(x) =∞, for x = 0,

for all real valued functions ψ ∈ C∞0 (R).
Suppose that (p(x, t), q(x, t)) = exp(λt)(ψ1(x), ψ2(x)) is a complex solution of

this linear system, where λ is a complex number, ψ1 and ψ2 are complex, bounded,
continuous functions defined on R. This leads to the following eigenvalue problem

λψ1 = ψ′′1 − αψ1 − ψ2 + αβδ(U − θ)ψ1,

λψ2 = ε(ψ1 − γψ2).

Define the linear differential operator L by

L

ψ1

ψ2

 =

ψ′′1 − αψ1 − ψ2 + αβδ(U − θ)ψ1

ε(ψ1 − γψ2)

 .

Definition 2.1. If there exists a complex number λ0 and there exists a complex,

vector valued, bounded, continuous function ψ0(λ0, x) =

ψ01(λ0, x)

ψ02(λ0, x)

 defined on

R, such that Lψ0 = λ0ψ0, then λ0 is called an eigenvalue and ψ0 =

ψ01

ψ02

 is

called an eigenfunction of the eigenvalue problem.

To see that λ0 = 0 is an eigenvalue and (ψ1(x), ψ2(x)) = (U ′(x),W ′(x)) is
an eigenfunction of the eigenvalue problem, let us differentiate the standing wave
equations

U ′′ + α[βH(U − θ)− U ]−W = 0,

ε(U − γW ) = 0,

with respect to x to get

U ′′′ − αU ′ −W ′ + αβδ(U − θ)U ′ = 0

ε(U ′ − γW ′) = 0.

Definition 2.2. (I) The standing wave front of the nonlinear system of reaction
diffusion equations (1.1)-(1.2) is stable, if max{Reλ : λ ∈ σ(L), λ 6= 0} ≤ −C0 and
if λ0 = 0 is an algebraically simple eigenvalue, where σ(L) represents the spectrum
of the linear differential operator L and C0 > 0 is a positive constant.
(II) The standing wave front of the nonlinear system of reaction diffusion equations
(1.1)-(1.2) is unstable, if there exists an eigenvalue λ0 with positive real part or if
the neutral eigenvalue λ0 = 0 is not simple.

Following John Evans’ idea in Evans [1–4], the essential spectrum of the linear
differential operator L is easy to find and it is given by

σessential(L) = {λ ∈ C : λ = λ1(r) or λ = λ2(r), r ∈ R},
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where

λ1(r) = −1

2

[
α+ r2 + γε+

√
(α+ r2 − γε)2 − 4ε

]
,

λ2(r) = −1

2

[
α+ r2 + γε−

√
(α+ r2 − γε)2 − 4ε

]
.

It is easy to find that the essential spectrum of L causes no problem to the stability
of the monotone standing wave front of the nonlinear system of reaction diffusion
equations (1.1)-(1.2).

Note that in the eigenvalue problem, we can solve the second equation to get
ψ2 = ε

λ+γεψ1. For convenience, let ψ = ψ1. Now the eigenvalue problem becomes

λψ = ψ′′ − αψ − ε

λ+ γε
ψ + αβδ(U − θ)ψ,

which is equivalent to

λψ = ψ′′ − αψ − ε

λ+ γε
ψ + αβ

ψ(0)

U ′(0)
δ(x).

3. The solutions of the eigenvalue problems.
Now let us study the eigenvalues and eigenfunctions of the eigenvalue problem.

The eigenvalue problem may be written as a first order linear system of differential
equations

d

dx

 ψ

ψ′

 =

 0 1

α+ λ+ ε
λ+γε 0

 ψ

ψ′

− αβψ(λ, 0)

U ′(0)
δ(x)

0

1

 .

The solution of the homogeneous system

d

dx

 ψ

ψ′

 =

 0 1

α+ λ+ ε
λ+γε 0

 ψ

ψ′


is given by ψ(λ, ε, x)

ψx(λ, ε, x)

 = C1 exp

(√
α+ λ+

ε

λ+ γε
x

) 1√
α+ λ+ ε

λ+γε


+C2 exp

(
−
√
α+ λ+

ε

λ+ γε
x

) 1

−
√
α+ λ+ ε

λ+γε

 ,

where C1 and C2 are constants.
Let us diagonalize the coefficient matrix. Define

T (λ, ε) =

 1 1√
α+ λ+ ε

λ+γε −
√
α+ λ+ ε

λ+γε

 .
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Then the inverse matrix exists and it is given by

[T (λ, ε)]−1 =
1

2
√
α+ λ+ ε

λ+γε


√
α+ λ+ ε

λ+γε 1√
α+ λ+ ε

λ+γε −1

 .

Now

[T (λ, ε)]−1

 0 1

α+ λ+ ε
λ+γε 0

T (λ, ε)

=


√
α+ λ+ ε

λ+γε 0

0 −
√
α+ λ+ ε

λ+γε

 .

Clearly

X(λ, ε, x) =

 exp
(√

α+ λ+ ε
λ+γεx

)
√
α+ λ+ ε

λ+γε exp
(√

α+ λ+ ε
λ+γεx

)
exp

(
−
√
α+ λ+ ε

λ+γεx
)

−
√
α+ λ+ ε

λ+γε exp
(
−
√
α+ λ+ ε

λ+γεx
)


is a fundamental matrix of the homogeneous system.
By using the method of variation of parameters and the fundamental matrix,

we find a bounded particular solution of the eigenvalue problem. The particular
solution is given by

αβψ(λ, ε, 0)

2
√
α+ λ+ ε

λ+γεU
′(0)

exp

(√
α+ λ+

ε

λ+ γε
x

)

·

 1√
α+ λ+ ε

λ+γε

 [1−H(x)]

+
αβψ(λ, ε, 0)

2
√
α+ λ+ ε

λ+γεU
′(0)

exp

(
−
√
α+ λ+

ε

λ+ γε
x

)

·

 1

−
√
α+ λ+ ε

λ+γε

H(x).

Therefore, the general solution of the eigenvalue problem is given by ψ(λ, ε, x)

ψx(λ, ε, x)

 = C1(λ, ε) exp

(√
α+ λ+

ε

λ+ γε
x

) 1√
α+ λ+ ε

λ+γε


+C2(λ, ε) exp

(
−
√
α+ λ+

ε

λ+ γε
x

) 1

−
√
α+ λ+ ε

λ+γε





522 L. H. Zhang

+
αβψ(λ, ε, 0)

2
√
α+ λ+ ε

λ+γεU
′(0)

exp

(√
α+ λ+

ε

λ+ γε
x

)

·

 1√
α+ λ+ ε

λ+γε

 [1−H(x)]

+
αβψ(λ, ε, 0)

2
√
α+ λ+ ε

λ+γεU
′(0)

exp

(
−
√
α+ λ+

ε

λ+ γε
x

)

·

 1

−
√
α+ λ+ ε

λ+γε

H(x),

where C1(λ, ε) and C2(λ, ε) are independent of x, but they depend on the parameters

λ and ε. The general solution is bounded on R if and only if

C1(λ, ε)

C2(λ, ε)

 =

0

0

.

The first component of the general solution of the eigenvalue problem is given
by

ψ(λ, ε, x) = C1(λ, ε) exp

(√
α+ λ+

ε

λ+ γε
x

)
+C2(λ, ε) exp

(
−
√
α+ λ+

ε

λ+ γε
x

)
+

αβψ(λ, ε, 0)

2
√
α+ λ+ ε

λ+γεU
′(0)

exp

(√
α+ λ+

ε

λ+ γε
x

)
[1−H(x)]

+
αβψ(λ, ε, 0)

2
√
α+ λ+ ε

λ+γεU
′(0)

exp

(
−
√
α+ λ+

ε

λ+ γε
x

)
H(x).

Let us find the relationship between C1(λ, ε), C2(λ, ε) and ψ(λ, ε, 0). Letting x = 0
in the first component of the general solution leads to

ψ(λ, ε, 0) = C1(λ, ε) + C2(λ, ε) +
αβψ(λ, ε, 0)

2
√
α+ λ+ ε

λ+γεU
′(0)

.

Hence

C1(λ, ε) + C2(λ, ε) =

1− αβ

2
√
α+ λ+ ε

λ+γεU
′(0)

ψ(λ, ε, 0).

To be an eigenfunction of the eigenvalue problem, the solution must be bounded as
x→ −∞. Let C2(λ, ε) = 0 to ensure that asymptotic behaviour. Then

C1(λ, ε) =

1− αβ

2
√
α+ λ+ ε

λ+γεU
′(0)

ψ(λ, ε, 0).
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4. The Evans function. Let Ω = {λ ∈ C: Reλ > −γε}. Define the Evans
function for the monotone standing wave front of the nonlinear system of reaction
diffusion equations (1.1)-(1.2) by

Efront(λ, ε) = 1− αβ

2
√
α+ λ+ ε

λ+γεU
′(0)

= 1−

√√√√ α+ 1
γ

α+ λ+ ε
λ+γε

. (2.1)

Define the Evans function of the decreasing standing wave front by

Eback(λ, ε) = 1− αβ

2
√
α+ λ+ ε

λ+γεU
′(0)

= 1−

√√√√ α+ 1
γ

α+ λ+ ε
λ+γε

. (2.2)

Note that

lim
|λ|→∞

Efront(λ, ε) = 1,

∂

∂λ
Efront(λ, ε) =

1

2

1

α+ λ+ ε
λ+γε

[
1− ε

(λ+ γε)2

]√√√√ α+ 1
γ

α+ λ+ ε
λ+γε

,

∂

∂λ
Efront(0, ε) =

1

2

(
1− 1

γ2ε

)
1

α+ 1
γ

> 0, if γ2ε > 1,

∂

∂λ
Efront(0, ε) =

1

2

(
1− 1

γ2ε

)
1

α+ 1
γ

< 0, if γ2ε < 1.

Now the compatible solution of the eigenvalue problem is given by ψ(λ, ε, x)

ψx(λ, ε, x)

 = C1(λ, ε) exp

(√
α+ λ+

ε

λ+ γε
x

) 1√
α+ λ+ ε

λ+γε


+C2(λ, ε) exp

(
−
√
α+ λ+

ε

λ+ γε
x

) 1

−
√
α+ λ+ ε

λ+γε


+

αβψ(λ, ε, 0)

2
√
α+ λ+ ε

λ+γεU
′(0)

exp

(√
α+ λ+

ε

λ+ γε
x

)

·

 1√
α+ λ+ ε

λ+γε

 [1−H(x)]

+
αβψ(λ, ε, 0)

2
√
α+ λ+ ε

λ+γεU
′(0)

exp

(
−
√
α+ λ+

ε

λ+ γε
x

)

·

 1

−
√
α+ λ+ ε

λ+γε

H(x),

where C1(λ, ε) + C2(λ, ε) = Efront(λ, ε)ψ(λ, ε, 0). The first component of the com-
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patible solution is given by

ψ(λ, ε, x) = C1(λ, ε) exp

(√
α+ λ+

ε

λ+ γε
x

)
+C2(λ, ε) exp

(
−
√
α+ λ+

ε

λ+ γε
x

)
+

αβψ(λ, ε, 0)

2
√
α+ λ+ ε

λ+γεU
′(0)

exp

(√
α+ λ+

ε

λ+ γε
x

)
[1−H(x)]

+
αβψ(λ, ε, 0)

2
√
α+ λ+ ε

λ+γεU
′(0)

exp

(
−
√
α+ λ+

ε

λ+ γε
x

)
H(x).

The compatible solution of the eigenvalue problem is bounded on R if and only if
Efront(λ, ε) = 0. Let Efront(λ, ε) = 0, there exist two eigenvalues

λ0 = 0, λ =
1

γ
− γε.

5. The stability/instability of the increasing standing wave front.

Let us review the linearized stability criterion. The nonlinear stability of the
standing wave front of the nonlinear system of reaction diffusion equations (1.1)-
(1.2) is equivalent to its linear stability, which is equivalent to the spectral stability.

By using the definitions of the stability and instability of the standing wave
front of the nonlinear system of reaction diffusion equations and also by using the
linearized stability criterion, we find that the increasing standing wave front is stable
if γ2ε > 1 and it is unstable if γ2ε < 1.

6. The bifurcations of the increasing standing wave front.

Obviously, the value γ2ε = 1 is the bifurcation point.

7. The stability of the standing wave fronts of the nonlinear scalar re-
action diffusion equation (1.3). For the increasing standing wave front of the
nonlinear scalar reaction diffusion equation

∂u

∂t
=
∂2u

∂x2
+ α[βH(u− θ)− u],

the eigenvalue problem is

λψ = ψ′′ − αψ + αβ
ψ(0)

U ′(0)
δ(x).

The linear differential operator is defined by

L0ψ = ψ′′ − αψ + αβ
ψ(0)

U ′(0)
δ(x).

The essential spectrum of the operator L0 is given by

σessential(L0) = {λ ∈ C : λ = −α− r2, r ∈ R}.
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The eigenvalue problem λψ = ψ′′ − αψ + αβ ψ(0)
U ′(0)δ(x) may be written as a first

order linear system of differential equations

d

dx

 ψ

ψ′

 =

 0 1

α+ λ 0

 ψ

ψ′

− αβ ψ(0)

U ′(0)
δ(x)

 0

1

 .

The general solution of the eigenvalue problem is given by ψ(λ, x)

ψx(λ, x)

 = C1(λ) exp(
√
α+ λx)

 1
√
α+ λ


+C2(λ) exp(−

√
α+ λx)

 1

−
√
α+ λ


+

αβψ(λ, 0)

2
√
α+ λU ′(0)

exp(
√
α+ λx)

 1
√
α+ λ

 [1−H(x)]

+
αβψ(λ, 0)

2
√
α+ λU ′(0)

exp(−
√
α+ λx)

 1

−
√
α+ λ

H(x).

The first component of the general solution is given by

ψ(λ, x) = C1(λ) exp(
√
α+ λx) + C2(λ) exp(−

√
α+ λx)

+
αβψ(λ, 0)

2
√
α+ λU ′(0)

exp(
√
α+ λx)[1−H(x)]

+
αβψ(λ, 0)

2
√
α+ λU ′(0)

exp(−
√
α+ λx)H(x).

The Evans function is defined by

Efront(λ) = 1−
√

α

α+ λ
,

for all complex numbers λ ∈ Ω0 = {λ ∈ C: Reλ > −α}. There exists no nonze-
ro eigenvalue in the right half complex plane. The neutral eigenvalue λ0 = 0 is
algebraically simple. The proof of Theorem 1.1 is completed. �

3. Conclusion and Remarks

3.1. Summary

Consider the following nonlinear system of reaction diffusion equations arising from
mathematical neuroscience

∂u

∂t
=
∂2u

∂x2
+ α[βH(u− θ)− u]− w,

∂w

∂t
= ε(u− γw).
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Also consider the nonlinear scalar reaction diffusion equations

∂u

∂t
=
∂2u

∂x2
+ α[βH(u− θ)− u].

There exist two standing wave fronts to both the nonlinear system of reaction
diffusion equations and the nonlinear scalar reaction diffusion equation. For the
system, if γ2ε > 1, then the standing wave fronts are stable. If 0 < γ2ε < 1. then
the standing wave fronts are unstable. The value γ2ε = 1 is the bifurcation point
for both monotone standing wave fronts. For the nonlinear scalar reaction diffusion
equations, the standing wave fronts are stable.

Summary of the eigenvalue problem

λψ = ψ′′ − αψ − ε

λ+ γε
ψ + αβ

ψ(0)

U ′(0)
δ(x),

and the Evans function

Efront(λ, ε) = 1−

√√√√ α+ 1
γ

α+ λ+ ε
λ+γε

,

for the nonlinear system of reaction diffusion equations

∂u

∂t
=
∂2u

∂x2
+ α[βH(u− θ)− u]− w,

∂w

∂t
= ε(u− γw).

(I) The Evans function E = Efront(λ, ε) is a complex analytic function of λ and ε,
it is real-valued if λ is real.

(II) The complex number λ0 ∈ Ω is an eigenvalue of the eigenvalue problem, if
and only if λ0 is a zero of the Evans function, that is, Efront(λ0, ε) = 0. In
particular, Efront(0, ε) = 0.

(III) The imaginary part of the Evans function Efront(λ, ε) is equal to zero if and
only if the imaginary part of λ is equal to zero. In another word, all eigenvalues
of the eigenvalue problems are real.

(IV) The algebraic multiplicity of any eigenvalue λ0 of the eigenvalue problem is
equal to the order of the zero λ0 of the Evans function E = Efront(λ, ε).

(V) The Evans function enjoys the following limit

lim
|λ|→∞

|Efront(λ, ε)| = 1,

in the right half plane {λ ∈ C: Reλ > −γε}.
(VI) Let γ2ε > 1. There hold the following results on the imaginary axis iR

sup
λ∈iR
|Efront(λ, ε)| = 1, sup

λ∈iR
|1− Efront(λ, ε)| = 1.

Moreover, there holds the following estimate on the imaginary axis

|Efront(λ, ε)| > 0,

for all λ ∈ iR but λ 6= 0.
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(VII) Let γ2ε > 1. There hold the following uniform estimates

0 < |Efront(λ, ε)| < 1,

for all λ ∈ C, with Reλ ≥ 0 but λ 6= 0.

(VIII) The derivative of the Evans function at λ0 = 0 is given by

∂

∂λ
Efront(0, ε) =

1

2

1

α+ 1
γ

(
1− 1

γ2ε

)
,

∂

∂λ
Efront(0, ε) > 0, if γ2ε > 1,

∂

∂λ
Efront(0, ε) = 0, if γ2ε = 1,

∂

∂λ
Efront(0, ε) < 0, if γ2ε < 1.

(IX) There exist exactly two solutions (counting multiplicities) to the equation
Efront(λ, ε) = 0: one is the neutral eigenvalue λ = 0. If 0 < γ2ε < 1, then the
other eigenvalue is a positive eigenvalue, given by

λ0 =
1

γ
− γε > 0.

If γ2ε > 1, then the other eigenvalue is a negative eigenvalue, given by

λ0 =
1

γ
− γε < 0.

If γ2ε = 1, then the other eigenvalue is λ = 0. For this case, λ = 0 is a
repeated eigenvalue.

(X) Let γ2ε > 1. On the right half real axis {λ ∈ R : λ > 0}, there hold the
following results

∂

∂λ
Efront(λ, ε) =

1

2

[
1− ε

(λ+ ε)2

]
1

α+ λ+ ε
λ+γε

√√√√ α+ 1
γ

α+ λ+ ε
λ+γε

> 0.

Efront(0, ε) = 0, lim
λ→∞

Efront(λ, ε) = 1,

3.2. Further Directions and Open Problems

Consider the following nonlinear singularly perturbed system of reaction diffusion
equations arising from mathematical neuroscience

∂u

∂t
=
∂2u

∂x2
+ α[βH(u− θ)− u]− w,

∂w

∂t
= ε(u− γw).

The existence and stability of fast multiple traveling pulse solutions (U,W ) =
(U(x+νfast(ε)t),W (x+νfast(ε)t)) with the fast moving coordinates z = x+νfast(ε)t
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and the fast wave speeds νfast(ε), the existence and instability of slow multiple trav-
eling pulse solutions (U,W ) = (U(x + νslow(ε)t),W (x + νslow(ε)t)) with the slow
moving coordinates z = x + νslow(ε)t and the slow wave speeds νslow(ε) have been
open for a long time. In the future, we wish to accomplish these results.

We will construct Evans functions to study the stability/instability of the multi-
ple traveling pulse solutions. For the fast and slow multiple traveling pulse solutions
of the nonlinear singularly perturbed system of reaction diffusion equations (1.1)-
(1.2), there may hold the following representations for the Evans functions

Efast−single−pulse(λ, ε)
= Efront(λ)Eback(λ) + Esingular−perturbation−1(λ, ε),

Efast−multiple−pulse(λ, ε)

= [Efast−single−pulse(λ, ε)]m + Esingular−perturbation−2(λ, ε),

Eslow−single−pulse(λ, ε)
= Estanding−single−pulse(λ, ε) + Esingular−perturbation−3(λ, ε),

Eslow−multiple−pulse(λ, ε)

= [Eslow−single−pulse(λ, ε)]m + Esingular−perturbation−4(λ, ε),

for all λ ∈ C with λ > −γε and for all ε > 0, where Efront(λ) stands for the Evans
functions of the traveling wave front of

∂u

∂t
=
∂2u

∂x2
+ α[βH(u− θ)− u],

and Eback(λ) stands for the traveling wave back of

∂u

∂t
=
∂2u

∂x2
+ α[βH(u− θ)− u]− w0,

for w0 = α(β − 2θ). Moreover

Esingular−perturbation−1(λ, ε) = λ exp
[
− 1

ε
O(1)

]
O(1),

Esingular−perturbation−2(λ, ε) = λ exp
[
− 1

ε
O(1)

]
O(1),

Esingular−perturbation−3(λ, ε) = λ exp
[
− 1

ε
O(1)

]
O(1),

Esingular−perturbation−4(λ, ε) = λ exp
[
− 1

ε
O(1)

]
O(1).

Let us compute the derivatives with respect to λ. We have

∂

∂λ
Efast−single−pulse(λ, ε) = E ′front(λ)Eback(λ) + Efront(λ)E ′back(λ)

+
∂

∂λ
Esingular−perturbation−1(λ, ε),
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and

∂

∂λ
Efast−multiple−pulse(λ, ε)

= m[Efront(λ)Eback(λ) + Esingular−perturbation−1(λ, ε)]m−1

·
{
E ′front(λ)Eback(λ) + Efront(λ)E ′back(λ) +

∂

∂λ
Esingular−perturbation−1(λ, ε)

}
+
∂

∂λ
Esingular−perturbation−2(λ, ε),

for all λ ∈ C with λ > −γε and for all ε > 0.
Let λ = 0, note that Efront(0) = 0 and Eback(0) = 0. Therefore, we see that

∂

∂λ
Efast−single−pulse(0, ε)

= E ′front(0)Eback(0) + Efront(0)E ′back(0) +
∂

∂λ
Esingular−perturbation−1(0, ε)

=
∂

∂λ
Esingular−perturbation−1(0, ε) > 0,

and

∂

∂λ
Efast−multiple−pulse(0, ε)

= m[Efront(0)Eback(0) + Esingular−perturbation−1(0, ε)]m−1

·[E ′front(0)Eback(0) + Efront(0)E ′back(0) +
∂

∂λ
Esingular−perturbation−(0, ε)]

+
∂

∂λ
Esingular−perturbation−2(0, ε)

=
∂

∂λ
Esingular−perturbation−2(0, ε) > 0.
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