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GLOBAL ANALYSIS FOR A DELAYED SIV
MODEL WITH DIRECT AND

ENVIRONMENTAL TRANSMISSIONS∗

Tongqian Zhang1,2,†, Xinzhu Meng1,2 and Tonghua Zhang3

Abstract In this paper, we propose a new SIV epidemic model with time
delay, which also involves both direct and environmental transmissions. For
such model, we first introduce the basic reproduction number R by using the
next generation matrix. And then global stability of the equilibria is discussed
by means of Lyapunov functionals and LaSalle’s invariance principle for delay
differential equations, which shows that the infection-free equilibrium of the
system is globally asymptotically stable if R < 1 and the epidemic equilibrium
of the system is globally asymptotically stable for R > 1.
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1. Introduction and model formulation

It is well known that many diseases are transmitted by close contact with the source
of infection. But recently empirical studies suggest that environmental transmission
is also playing an important role in the spread of some diseases including many

(a) human diseases such as gastroenteritis [7], cholera [15, 17], chronic wasting
disease [22], tetanus [27];

(b) animal diseases - Hepatitis E virus (HEV) in pigs [2], rabbit haemorrhagic
disease [10], avian cholera [4], epizootics of plague [30]), to name a few; and

(c) zoonoses: salmonella [32], Nipah and Hendra viral diseases [8], bovine spongi-
form encephalopathy [1], highly pathogenic avian influenza [23, 31], brucel-
losis [6, 14], for instance.
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Complexity of transmission dynamics of certain diseases between the host and the
pathogen in the environment has led to both direct host to host and indirect envi-
ronment to host transmission pathways [11, 26, 33]. However, the common mathe-
matical models for describing the spread of infectious diseases only considered one
of the hand [3, 5, 12, 13, 18, 19, 21]. So it is desired to establish epidemic models
involving both direct and environmental transmissions. Few works have been done,
for example Breban et al. [24] proposed a general multi-strain model with direc-
t and environmental transmission to analyze the transpiration dynamics of avian
influenza viruses as follows,

dS

dt
= π − µS − S

n∑
i=1

βiIi − ρSf(V ),

dIj
dt

= βjSIj − (µ+ γj)Ij + ρSf(V )εj(V ),

dVj
dt

= ωjIj − ηjVj ,

(1.1)

where j = 1, 2, · · · , n. S represents the number of susceptible individuals, Ij repre-
sents the number of individuals infected with strain j, and Vj represents the number
of virion of strain j contaminating the environment; the mixed viral population is
denoted by V = {V1, V2, · · · , Vn}; Roche et al. [25] expanded model (1.1) by con-
sidering the mortality due to diseases into the following one

dS

dt
= ν −

(
σβI(t) + ρ

V (t)

V (t) +K

)
S(t)− µS(t),

dI

dt
=

(
σβI(t) + ρ

V (t)

V (t) +K

)
S(t)− (µ+ γ + α)I(t),

dV

dt
= ωI(t)− ηV (t).

(1.2)

Nowadays, time delays are commonly used in biological models to reflect some
biological facts, for example, a gestation period or reaction time of a population [34].
Motivated by the biological meaning, we introduce a time delay, τ in the process of
an individual becoming infectious, which results in

dS

dt
= ν −

(
σβI(t) + ρ

V (t)

V (t) +K

)
S(t)− µS(t),

dI

dt
= e−µτ

(
σβI(t− τ) + ρ

V (t− τ)

V (t− τ) +K

)
S(t− τ)− (µ+ γ + α)I(t),

dV

dt
= ωI(t)− ηV (t),

(1.3)

where S(t) represents the number of susceptible individuals, I(t) represents the
number of individuals infected and V (t) represents the number of virion in the
environment. ν represents the input of susceptible individuals. σ and β represent
the host contact rate and β denotes infectiousness, respectively. ρ represents the
uptake rate of the environmental reservoir.

The rest of paper is to investigate the globally asymptotic stability of the equilib-
ria of model (1.3), and is organised as follows. We first derive the basic reproduction
number and show the existence of infection-free equilibrium and the endemic equi-
librium in Section 2. Then Section 3 dedicates to the investigation of local stability
of the equilibria. In Section 4, we focus on the globally asymptotic stability of the
two equilibria. Finally, we briefly conclude the paper in Section 5.
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2. Basic reproduction number and the existence of
the equilibria

Let C = C([−τ, 0], R3) denote the Banach space of continuous functions from [−τ, 0]
to R3 and the initial condition of (1.3) be

S(ς) = φ1(ς) ≥ 0, I(ς) = φ2(ς) ≥ 0, V (ς) = φ3(ς) ≥ 0, ς ∈ [−τ, 0], (2.1)

where φ = (φ1, φ2, φ3)T ∈ C. Then a standard procedure from [9,16] will show that
the solution of the initial value problem (1.3) and (2.1) exists for all t > 0, and
furthermore it is unique, non-negative and ultimately bounded.

Obviously (1.3) has a infection-free equilibria E0 = (ν/µ, 0, 0). Denote m =
µ+γ+α for the sake of simplicity and let z = (I, V, S)T . Then we have from model
(1.3)

z′ = F (z)− V (z),

where

F (z) =


e−µτ

(
σβI(t− τ) + ρ V (t−τ)

V (t−τ)+K

)
S(t− τ)

0

0

 ,

V (z) =


mI

−ωI + ηV

−ν +
(
σβI(t) + ρ V (t)

V (t)+K

)
S(t) + µS(t)

 .

The Jacobian matrices of F (z) and V (z) at E0 are

DF (E0) =


F2×2 0

0

0 0 0

 and DV (E0) =


V2×2 0

0

σβν
µ

ρν
Kµ µ

 ,

respectively, where

F2×2 =

 e−µτ
σβν

µ
e−µτ ρνKµ

0 0

 , V2×2 =

 m 0

−ω η

 .

Then from [29] the next generation matrix for model (1.3) is FV −1 and the spectral
radius of matrix FV −1 is

ρ(FV −1) =
e−µτν(σβηK + ρω)

mηµK
≡ R, (2.2)

which is the basic reproduction number of system (1.3).
It is easy to check that (1.3) has an equilibrium E1 = (S∗, I∗, V ∗) with

S∗ =
v − eµτmI∗

µ
=

eµτm(ωI∗ + ηK)

σβωI∗ + σβηK + ρω
, V ∗ =

ωI∗

η
,
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substituting which into the second equation of (1.3) and equating to zero yield

a(I∗)2 + bI∗ + c = 0, (2.3)

where

a =σβmω > 0,

b =σβmKη + ρωm+mωµ− e−µτσβων,
c =mηµK − e−µτν(σβηK + ρω).

Then we know that if R > 1, i.e. c < 0, equation (2.3) has a unique positive root.
Then we reach

Theorem 2.1. If R > 1, model (1.3) has an endemic equilibrium E1(S∗, I∗, V ∗),
where

S∗ =
eµτm(ωI∗ + ηK)

σβωI∗ + σβηK + ρω
, I∗ =

−b+
√
b2 − 4ac

2a
, V ∗ =

ωI∗

η
.

3. Local stability of the equilibria

Regarding the local stability, we have the following theorem.

Theorem 3.1. For model (1.3), we have

(i) E0 is locally stable if R < 1 and unstable if R > 1; and

(ii) E1 is locally stable when it exists.

Proof. We firstly prove (i). Letting x = S − S0, y = I, z = V in (1.3) yields
x′(t) = −(σβy(t) + ρz(t))xS(t)− (σβy(t) + ρz(t))S0 − µx(t),

y′(t) = e−µτ (σβy(t− τ) + ρz(t− τ))x(t− τ)

+ e−µτ (σβy(t− τ) + ρz(t− τ))S0 −my(t),

z′(t) = ωy(t)− ηz(t).

(3.1)

Notice the Jacobian of model (3.1) evaluated at E0 is

J(E0) =


−µ −σβS0 −ρS0

0 e−µτσβS0 −m e−µτρS0

0 ω −η

 ,

from which we have the characteristic equation

(−µ− λ)((e−µτσβS0e
−λτ −m− λ)(−η − λ)− e−µτρωS0) = 0, (3.2)

Clearly, it has a root λ = −µ < 0. Then we only need to analyze the distribution
of roots, which determines the stability of solution of system (3.1), of equation

P (λ) +Q(λ)e−λτ = 0, (3.3)

where
P (λ) = λ2 +Aλ+B,Q(λ) = Cλ+D,
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and

A = m+ η, B = mη − e−µτρωS0, C = −e−µτσβS0, D = −e−µτησβS0.

When τ = 0, (3.3) reduces to

λ2 + (m+ η − σβS0)λ+ [mη − S0(ρω + σβη)] = 0. (3.4)

Since that Rτ=0 < 1 implies m+η−σβS0 > 0 and mη−S0(ρω+σβη) > 0, we know
the two roots of (3.4) have always negative real part. Next, we assume equation
(3.3) with τ 6= 0 has a pair of pure imaginary roots ±i$($ > 0), which implies
equation

F ($) = $4 + (A2 − C2 − 2B)$2 +B2 −D2 = 0 (3.5)

has at least one positive solution. Since R = e−µτS0(σβη+ρω)
mη < 1, then B > 0, D < 0

and m > e−µτσβS0. Then it is to see that

B2 −D2 = (B −D)(B +D)

= (B −D)(mη − e−µτρωS0 − e−µτσβS0)

= (B −D)mη(1− e−µτS0(σβη + ρω))

= (B −D)mη(1−R)

> 0,

and

A2 − C2 − 2B = (m+ η)2 − (e−µτσβS0)2 − 2(mη − e−µτρωS0)

= η2 + 2e−µτρωS0 +m2 − (e−µτσβS0)2

> η2 + 2e−µτρωS0

> 0.

Then we can conclude that when R < 1, equation (3.5) has no positive real root,
which leads to that equation (3.4) does not have pure imaginary root. It then implies
that all the roots of (3.3) have always negative real parts. Thus the infection-free
equilibrium E0 of system is locally stable.

Similarly we can discuss the local stability of E1. To this end, we let x = S −
S∗, y = I−I∗, z = V −V ∗, to shift the equilibrium to the original. Then linearisation
at the original results in a characteristic equation

P (λ) +Q(λ)e−λτ = 0, (3.6)

where

P (λ) = b3λ
3 + b2λ

2 + b1λ+ b0,

and

Q(λ) = c2λ
2 + c1λ+ c0,
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with

b0 = Λmη,

b1 = Λη + S∗mη + Λm,

b2 = S∗η + Λ + S∗m,

b3 = S∗,

c0 = −µS∗2(σβη + ωρ)e−µτ ,

c1 = −S∗2(σβη + µσβ + ρω)e−µτ ,

c2 = −S∗2e−µτσβ.

When τ = 0, we claim that the roots of (3.6) always have negative real parts. In
fact, if τ = 0, (3.6) reduces

f(λ) = a3λ
3 + a2λ

2 + a1λ+ a0 = 0,

where

a3 = S∗η, a2 = S∗η2 + Λη + S∗2ρω,

a1 = ΛρωS∗ + Λη2 +mI∗S∗ησβ, a0 = mI∗S∗ηρω +mI∗S∗η2σβ.

Obviously, a3, a2, a1, a0 > 0 and

a2a1 − a0a3
=2ΛρωS∗2η2 + Λ2ρωS∗η + Λρ2ω2S∗3

+ Λη4S∗ + Λ2η3 +mI∗S∗2η3σβ +mI∗S∗η2σβΛ

+mI∗S∗3ησβρω −mI∗S∗2η2ρω −mI∗S∗2η3σβ
=ΛρS∗2ωη2 + Λ2ρS∗ωη + Λρ2S∗3ω2 + Λη4S∗ + Λ2η3 + S∗3η2µρω

+ ΛσβS∗3η ∗ ρω − µσβS∗4ηρω + Λ2σβS∗η2 − µσβS∗2η2Λ

=ΛρS∗2ωη2 + Λ2ρS∗ωη + Λρ2S∗3ω2 + Λη4S∗ + Λ2η3 + S∗3η2µρω

+ (σβρωηS∗3 + ΛσβS∗η2)(Λ− µS∗)
=ΛρS∗2ωη2 + Λ2ρS∗ωη + Λρ2S∗3ω2 + Λη4S∗ + Λ2η3 + S∗3η2µρω

+ (σβρωηS∗3 + ΛσβS∗η2)µS∗(R − 1) > 0.

Then by the Rouche-Hurwitz Criterion [28], all the roots of f(λ) = 0 always have
negative real parts. We then assume (3.6) has a pair of pure imaginary roots
i$($ > 0), which results in

G($) = d3$
6 + d2$

4 + d1$
2 + d0 = 0, (3.7)

here

d0 = b20 − c20, d1 = b21 + 2c0c2 − 2b0b2 − c21,
d2 = b22 − 2b1b3 − c22, d3 = b23 > 0.



A delay SIV model with direct and environmental transmissions 485

Notice R =
e−µτS0(σβη + ρω)

mη
> 1, then

d0 = (b0 + |c0|)(b0 − |c0|) = (b0 + |c0|)(Λmη − µS∗2(σβη + ωρ)e−µτ )

= (b0 + |c0|)Λmη(1− 1

R
) > 0,

d1 = (S∗η + Λ + S∗m)2 − 2(Λη + S∗mη + Λm)S∗ − (−S∗2e−µτσβ)2

= (S∗η)2 + Λ2 + (S∗m)2 − (S∗2e−µτσβ)2

= (S∗η)2 + Λ2 + (S∗m)2 − S∗2(S∗e−µτσβ)2

= (S∗η)2 + Λ2 + (S∗m)2 − S∗2(
Λ

µR

σβµmηR

Λ(σβη + ρω)
)2

= (S∗η)2 + Λ2 + (S∗m)2 −mS∗2
(

σβη

σβη + ρω

)2

> (S∗η)2 + Λ2 > 0

and

d2 =(Λη + S∗mη + Λm)2 + 2µS∗4(σβη + ωρ)(e−µτ )2σβ − 2Λmη(S∗η + Λ + S∗m)

− (S∗2(σβη + µσβ + ρω)e−µτ )2

=(Λη)2 + (S∗mη)2 + (Λm)2 − 2(e−µτ )2S∗2σβηρω

=(Λη)2 + (S∗mη)2 + (Λm)2 − 2S∗2
(

Λ

µR

)2(
µmηR

Λ(σβη + ρω)

)2

σβηρω

=(Λη)2 + (Λm)2 + (S∗mη)2 − (S∗mη)2
2σβηρω

(σβη + ρω)2

>(Λη)2 + (Λm)2 > 0.

Then equation (3.6) have no pure imaginary roots ±i$. Thus all roots of (3.6) have
always negative real parts. This completes the proof.

4. Global stability of the equilibria

Following the idea of [20], we will prove the global stability of the two equilibria of
model (1.3) in this section. Let (St, It, Vt)

T = (S(t+ θ), I(t+ θ), V (t+ θ))T , (−τ ≤
θ ≤ 0) be any solution of (1.3) with the initial condition (1.3). Then we can prove

Theorem 4.1. For model (1.3) and τ ≥ 0, we have

(i) if R < 1, the infection-free equilibrium E0 is globally asymptotically stable;

(ii) if R = 1, the infection-free equilibrium E0 is globally attractive; and

(iii) if R > 1, the epidemic equilibrium E1 is globally asymptotically stable.

Proof. Define

G = {φ = (φ1, φ2, φ3)T ∈ C | S0 ≥ φ1 ≥ 0, φ2 ≥ 0, φ3 ≥ 0}.
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Then it is a positively invariant with respect to (1.3), i.e., for any t ≥ 0, S(t) ≤ S0.

In fact, from the first equation of (1.3), we get
dS

dt
≤ ν − µS(t), then we have

lim sup
t→+∞

S(t) ≤ S0. For any φ = (φ1, φ2, φ3)T ∈ G, let (S(t), I(t), V (t))T be the

solution of (1.3) with the initial function φ. If there is t′ > 0 such that S(t′) > S0

and
dS

dt
|t=t′> 0, then from the first equation of (1.3), we have

dS

dt

∣∣∣∣
t=t′

= ν −
(
σβI(t′) + ρ

V (t′)

V (t′) +K

)
S(t1)− µS(t′)

≤ −
(
σβI(t′) +

V (t′)

V (t′) +K

)
S(t′) ≤ 0,

which is a contradiction. Thus, for any t ≥ 0, we have S(t) ≤ S0, i.e., G is a
positively invariant with respect to (1.3).

When R < 1, we define on G

L1(φ) = W1(0) + U1(φ) + U2(φ), (4.1)

where

W1(0) = φ1(0)− S0 − S0 ln
φ1(0)

S0
+ eµτφ2(0) + kφ3(0),

U1(φ) =

∫ 0

−τ
σβφ1(ξ)φ2(ξ)dξ, U2(φ) =

∫ 0

−τ
ρ
φ1(ξ)φ3(ξ)

φ3(ξ) + k
dξ,

and here k > 0 is a constant to be determined. Obviously, L1(φ) is continuous on
the subset G ∈ C. It follows from (1.3) and (4.1) that

dL1(φ)

dt

∣∣∣∣
(1.3)

≤− µ

φ1(0)
(φ1(0)− S0)2 + ω

(
k − meµτ − σβS0

ω

)
φ2(0)

+ η

(
ρS0

ηK
− k
)
φ3(0).

(4.2)

Since R < 1, we have ρS0

ηK < meµτ−σβS0

ω . So we can choose k > 0 such that ρS0

ηK <

k < meµτ−σβS0

ω . Hence, we have that dL1(φ)
dt |(1.3)≤ 0 for any φ ∈ G. Then L1(φ) is

a Lyapunov functional on the subset G ∈ C.
Furthermore, define

Ω1 = {φ ∈ G|dL1(φ)

dt
|(1.3)= 0}.

Obviously, dL1(φ)
dt |(1.3)= 0 holds if and only if St = S0, It = 0, Vt = 0. Let M be

the largest invariant set in Ω1 with respect to (1.3). Then M = {E0}. In fact, M
is not empty since E0 ∈M . For ∀φ ∈M , let (S(t), I(t), V (t))T be the solution of
(1.3) under the initial function φ. According to the invariance of M , for any t ∈ R,
we get (St, It, Vt) ∈ M ⊂ Ω1. Then S(t) ≡ S0, I(t) ≡ 0, V (t) ≡ 0, for any t ∈ R.
Thus, M = {E0}. By using Lyapunov-LaSalle invariance principal [9,12,13,16], we
have that E0 is global asymptotic stability for any time delay τ ≥ 0. This proves
the conclusion (i).
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When R = 1. Define a Lyapunov functional L2(φ) on G as follows,

L2(φ) = W2(0) + U1(φ) + U2(φ), (4.3)

where

W2(0) = φ1(0)− S0 − S0 ln
φ1(0)

S0
+ eµτφ2(0) +

ρS0

ηK
φ3(0),

and Ω2 = {φ ∈ G|dL2(φ)
dt |(1.3)= 0}. Then a similar discussion as for R < 1 leads to

the conclusion (ii).
For the case of R > 1, we define function L3(φ) on G as follows,

L3(φ) = W3(0) + σβS∗I∗U3(φ) +
ρS∗V ∗

V ∗ +K
U4(φ), (4.4)

here

W3(0) =φ1(0)− S∗ − S∗ ln
φ1(0)

S∗
+ eµτ

(
φ2(0)− I∗ − I∗ ln

φ2(0)

I∗

)
+

ρS∗

(V ∗ +K)η

(
φ3(0)− V ∗ − V ∗ ln

φ3(0)

V ∗

)
,

U3(t) =

∫ 0

−τ

[
φ1(ξ)φ2(ξ)

S∗I∗
− 1 + ln

φ1(ξ)φ2(ξ)

S∗I∗

]
dξ,

U4(t) =

∫ 0

−τ

 φ1(ξ)φ3(ξ)
φ3(ξ)+K

S∗V ∗

V ∗+K

− 1 + ln
φ1(ξ)φ3(ξ)

S∗V ∗

V ∗+K

 dξ.
We claim that L3(φ) is a Lyapunov functional. First, it follows from (1.3) and (4.4)
that

dL3(φ)

dt
=− µ (φ1(0)− S∗)2

φ1(0)
+ 2σβS∗I∗ − σβS∗2I∗

φ1(0)
− σβI∗φ1(−τ)φ2(−τ)

φ2(0)

+ σβS∗I∗ ln
φ1(−τ)φ2(−τ)

φ1(0)φ2(0)
+

3ρS∗V ∗

V ∗ +K
− ρS∗2V ∗

(V ∗ +K)φ1(0)

− ρS∗V ∗2φ2(0)

φ3(0)I∗(V ∗ +K)
− ρφ1(−τ)φ3(−τ)I∗

φ2(0)(φ3(−τ) +K)
+

ρS∗V ∗

V ∗ +K
ln

φ1(−τ)φ3(−τ)
φ3(−τ)+K
φ1(0)φ3(0)
φ3(0)+K

+
S∗

φ1(0)

(
σβφ2(0) + ρ

φ3(0)

φ3(0) +K

)
φ1(0) +

ρS∗V ∗φ2(0)

(V ∗ +K)I∗
− eµτmφ2(0)

− ρS∗

V ∗ +K
φ3(0)

factoring the last term of which gives

dL3(φ)

dt
=− µ (φ1(0)− S∗)2

φ1(0)
(4.5)

+ σβS∗I∗
(

2− S∗

φ1(0)
− φ1(−τ)φ2(−τ)

S∗φ2(0)
+ ln

φ1(−τ)φ2(−τ)

φ1(0)φ2(0)

)
(4.6)

+
ρS∗V ∗

V ∗ +K

(
4− S∗

φ1(0)
− V ∗φ2(0)

φ3(0)I∗
− φ3(0) +K

V ∗ +K
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− V ∗ +K

S∗V ∗
φ1(−τ)φ3(−τ)I∗

φ2(0)(φ3(−τ) +K)
+ ln

φ1(−τ)φ3(−τ)
φ3(−τ)+K
φ1(0)φ3(0)
φ3(0)+K

)
(4.7)

+
ρS∗V ∗

V ∗ +K

(
−1− φ3(0)

V ∗
+
φ3(0) +K

V ∗ +K
+

V ∗ +K

φ3(0) +K

φ3(0)

V ∗

)
(4.8)

Noticing

2− S∗

φ1(0)
− φ1(−τ)φ2(−τ)

S∗φ2(0)
+ ln

φ1(−τ)φ2(−τ)

φ1(0)φ2(0)
(4.9)

=

(
1− S∗

φ1(0)
+ ln

S∗

φ1(0)

)
(4.10)

+

(
1− φ1(−τ)φ2(−τ)

S∗φ2(0)
+ ln

φ1(−τ)φ2(−τ)

S∗φ2(0)

)
, (4.11)

4− S∗

φ1(0)
− V ∗φ2(0)

φ3(0)I∗
− φ3(0) +K

V ∗ +K
− V ∗ +K

S∗V ∗
φ1(−τ)φ3(−τ)I∗

φ2(0)(φ3(−τ) +K)

+ ln
φ1(−τ)φ3(−τ)/(φ3(−τ) +K)

φ1(0)φ3(0)/(φ3(0) +K)
(4.12)

=

(
1− S∗

φ1(0)
− ln

S∗

φ1(0)

)
(4.13)

+

(
1− V ∗φ2(0)

I∗φ3(0)
− ln

V ∗φ2(0)

I∗φ3(0)

)
(4.14)

+

(
1− φ3(0) +K

V ∗ +K
+ ln

φ3(0) +K

V ∗ +K

)
(4.15)

+

(
1− V ∗ +K

S∗V ∗
φ1(−τ)φ3(−τ)I∗

φ2(0)(φ3(−τ) +K)
+ ln

V ∗ +K

S∗V ∗
φ1(−τ)φ3(−τ)I∗

φ2(0)(φ3(−τ) +K)

)
, (4.16)

and

−1− φ3(0)

V ∗
+
φ3(0) +K

V ∗ +K
+

V ∗ +K

φ3(0) +K

φ3(0)

V ∗
= − K(φ3(0)− V ∗)2

(φ3(0) +K)(V ∗ +K)V ∗
≤ 0.

And further noticing the function H (t) = 1 − s(t) + ln s(t) is always non-positive
for any function s(t) > 0, and H (t) = 0 if and only if s(t) = 1, we have that the
terms in (4.10)-(4.11) and (4.13)-(4.16) are always non-positive. Hence, we have

that
dL3(φ)

dt
≤ 0. Therefore, L3(φ) is a Lyapunov functional on the subset G ∈ C.

Next, in order to employ the Lyapunov-LaSalle invariance principal, we define

Ω3 = {φ ∈ G|dL3(φ)
dt |(1.3)= 0}. It is clear that dL3(φ)

dt |(1.3)= 0 holds if and only if

St(0)

S∗
=
St(−τ)It(−τ)

S∗It(0)
=
St(−τ)Vt(−τ)I∗

S∗V ∗It(0)
=
V ∗It(0)

I∗Vt(0)
= 1. (4.17)

Let U be the largest invariant set in Ω3 with respect to (1.3). It is easy to show U =
{E1}. Finally, the Lyapunov-LaSalle invariance principal implies the conclusion (iii).

5. Conclusion

In this paper, we first proposed a new SIV epidemic model with both direct and
environmental transmission, which is a delayed version of the model in [25]. By
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constructing suitable Lyapunov functionals and using Lyapunov-LaSalle invariance
principal, the completed global stabilities for model (1.3) were discussed. It is
suggested that the global stabilities of the equilibria of model (1.3) strongly depend
on the basic reproductive number R: the infection-free equilibrium of the system is
globally asymptotically stable if R < 1 and the epidemic equilibrium of the system
is globally asymptotically stable for R > 1.
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