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Abstract We present the ability of numerical simulations to reproduce the
mean-square exponential dichotomy of stochastic differential equations. Un-
der some conditions, we show that the mean-square exponential dichotomy of
stochastic differential equations is equivalent to that of the numerical method
for sufficient small step sizes.
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1. Introduction

Let (Ω,F , {Ft}t≥0,P) be a standard filtered probability space, i.e., (Ω,F ,P) is a
complete probability space, {Ft}t≥0 is a filtration with F0 contains all P-null set-
s. For a matrix or a vector A, we use AT to denote its transpose. Let ω(t) =
(ω1(t), . . . ωm(t))T be an m-dimensional Brownian motion defined on the space
(Ω,F , {Ft}t≥0,P). Let | · | be the Euclidean norm in Rn and operator norm
in Rn×m, i.e., |A| = sup{|Ax| : |x| = 1} if A is a matrix. In addition, let
L2

Fs
(Ω,Rn) denote the family of all Fs-measurable Rn-valued random variables,

i.e., ξs : Ω→ Rn such that

E|ξs|2 <∞,

for all s ≥ 0. Consider an n-dimensional Itô stochastic differential equation (SDE)
(we refer the reader to [1, 5, 6, 15] for details about SDEs),

dy(t) = f(y(t))dt+ g(y(t))dω(t), t ≥ 0, (1.1)

with initial data y(s) = ξs ∈ L2
Fs

(Ω,Rn). The following numerical method com-
putes approximations xk ≈ y(k∆t):

xk+1 = xk + (1− θ)f(xk)∆t+ θf(xk+1)∆t+ ∆t
1
2 g(xk)Vk, (1.2)
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where ∆t > 0 is the constant stepsize, θ ∈ [0, 1] is a fixed parameter and each Vk
is an independent random variable of the form N(0, 1). Such a method was called
“stochastic theta method (STM)” in the literature [8, 9, 11]. In the deterministic
case, g ≡ 0, (1.2) is called the theta method (TM) and the choice θ = 0 gives the
Euler-Maruyama method (EM)

xk+1 = xk + f(xk)∆t+ ∆t
1
2 g(xk)Vk, (1.3)

which has been widely used [7]. The aim of this paper is to study the mean-square
exponential dichotomy of numerical methods for stochastic differential equations.
The classical notion of exponential dichotomy introduced by Perron in [17] plays an
important role in the study of dynamical behaviors of differential equations in the
deterministic case, particularly in what concerns the study of stable and unstable
invariant manifolds, and therefore has attracted much attention. We refer to the
books [3,16] for details and further references related to exponential dichotomies. A
more general exponential dichotomy, which is the so-called “nonuniform exponential
dichotomy”, has been introduced and developed by Barreira and Valls during the
last few decades [2]. The concept of exponential dichotomy in mean-square for
SDE has been introduced and studied in [13, 20, 21]. Mean-square and asymptotic
stability of the stochastic theta method was studied by Higham in [8]. For more
results about the numerical methods of SDE, we refer the reader to [4, 9, 10, 12, 14,
19]. We carry out numerical simulations using a numerical method with a small
step size ∆t, and we will try to answer two key questions: (Q1) If the SDE is
exponential dichotomy in mean square, will the numerical method be exponential
dichotomy in mean square for sufficiently small ∆t? (Q2) If the numerical method is
exponential dichotomy in mean square for small ∆t, can we infer that the underlying
SDE is exponential dichotomy in mean square? These two questions deal with an
asymptotic (t → ∞) property, and therefore they cannot be answered directly
by applying traditional finite-time convergence results. Our approach was heavily
motivated by the ideas contained in [8, 11, 18]. In [18], the concept of mean-square
stability with respect to a linear test equation was studied, and a condition was
derived to characterizes the mean-square stability. In [8], Higham studied a linear
test equation with a multiplicative noise term and considered mean-square and
asymptotic stability of a stochastic version of the theta method. In [11], it was
proved that, under some suitable conditions, for sufficiently small sizes, the mean-
square stability of the SDE and that of the numerical method is equivalent. The
rest of this paper is organized as follows: The definitions of exponential dichotomy
in mean square (EDMS) for the SDE and numerical method are given in Section
2. In Section 3, under some reasonable conditions, we show the equivalence, for
sufficiently small step sizes, of the mean-square exponential dichotomy of the SDE
and that of the method. We also present the result on exponential contraction as
a special case of exponential dichotomy, and an example is presented to illustrate
our result about exponential contraction.

2. Preliminaries

To ensure that (1.1) has a unique solution for any initial data y(s) = ξs, thoughout
this paper we will always assume that the following two standard hypotheses hold.
See [1, 5, 15] for details.
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H1. (Lipschitz condition) for all x, y ∈ Rn and t ∈ [0, T ],

|f(x)− f(y)|2 ∨ |g(x)− g(y)|2 ≤ L|x− y|2

for some constant L > 0, here a ∨ b means the maximum of a and b.

H2. f(0) = g(0) = 0.

Note that assumptions H1 and H2 implies the following linear growth condition

|f(x)|2 ∨ |g(x)|2 ≤ L|x|2, for all x ∈ Rn.

We assume that the phase space Rn can be splitted into a direct sum, i.e.,

Rn = X1 ⊕X2,

where X1 is a linear subspace of Rn, and X2 is the complementary subspace of X1.

Definition 2.1. The solution y(t) ∈ L2
Ft

(Ω,Rn) with initial data ξs ∈ L2
Fs

(Ω,Rn)
of SDE (1.1) is said to be EDMS if there exist positive constants M and a such
that

E|y(t)|2 ≤Me−a(t−s)E|y(s)|2, ∀ t ≥ s ≥ 0, ∀ ξs ∈ X1; (2.1a)

E|y(s)|2 ≤Me−a(t−s)E|y(t)|2, ∀ t ≥ s ≥ 0, ∀ ξs ∈ X2. (2.1b)

Stoica proved in [20] that there exists an exponential dichotomy in mean square
of stochastic cocycles generated by stochastic differential equations. The following
example proposed here is to illustrate the existence of EDMS for the solution of
SDE.

Example 2.1. Consider the following equation{
dX = −bXdt+ σdW,

dY = bY dt+ σdW,
(2.2)

with initial data (X(0), Y (0)) independent of the Brownian motion, where b > 0 is
a coefficient of friction, and σ is a diffusion coefficient. It is easy to verify that its
solution is given as 

X(t) = e−btX(0) + σ

∫ t

0

e−b(t−t1)dW,

Y (t) = ebtY (0) + σ

∫ t

0

eb(t−t1)dW.

Note that

E|X(t)|2=E
(
e−2btX2(0) + 2σe−btX(0)

∫ t

0

e−b(t−t1)dW

+σ2
( ∫ t

0

e−b(t−t1)dW
)2)

=e−2btE|X(0)|2 + 2σe−btE|X(0)|E
(∫ t

0

e−b(t−t1)dW

)
+σ2

∫ t

0

e−2b(t−t1)dt1

=e−2btE|X(0)|2 +
σ2

2b
(1− e−2bt).
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From Condition 2.1 below, we know that E|X(s)|2 > 0 for all s ≥ 0 and note
that we focus on finite-time convergence, e.g., t ∈ [0, T ], thus we obtain that

E|X(t)|2

E|X(s)|2
=
e−2btE|X(0)|2 + σ2

2b (1− e−2bt)

e−2bsE|X(0)|2 + σ2

2b (1− e−2bs)

≤
e−2btE|X(0)|2 + σ2

2b

e−2bsE|X(0)|2

≤M1e
−2b(t−s), (2.3)

with t ≥ s ≥ 0, where M1 = 1 + σ2e2bT

2bE|X(0)|2 > 0. Similarly, we can get

E|Y (s)|2 ≤M2e
−2b(t−s)E|Y (t)|2 for t ≥ s ≥ 0, (2.4)

where M2 = 1 + σ2e2bT

2bE|Y (0)|2 > 0. From (2.3) and (2.4), we know that the solution of

SDE (2.2) is EDMS.

Now we define EDMS for a numerical method to a continuous-time (using in-
terpolation) approximation x(t) of SDE (1.1).

Definition 2.2. For a given step size ∆t, a numerical method (1.2) is said to be
EDMS on the SDE (1.1) if there exist positive constants N and b such that with
initial data ξs ∈ L2

Fs
(Ω,Rn),

E|x(t)|2 ≤ Ne−b(t−s)E|x(s)|2, ∀t ≥ s ≥ 0, ∀ξs ∈ X1; (2.5a)

E|x(s)|2 ≤ Ne−b(t−s)E|x(t)|2, ∀t ≥ s ≥ 0, ∀ξs ∈ X2. (2.5b)

In this paper, we wish to know whether the numerical method shares EDMS with
the solution of SDE. Theorem 3.1 below resolves the issue positively for numerical
methods that satisfy the following natural finite-time bound condition.

Condition 2.1. For sufficiently small ∆t, the numerical method applied to (1.1)
with initial condition x(s) = y(s) = ξs satisfies, for any T > 0,

0 < inf
s≤t≤T

E|x(t)|2 ≤ sup
s≤t≤T

E|x(t)|2 ≤ Bξs,T , (2.6)

where Bξs,T depends on ξs and T but not on ∆t, and

sup
0≤t≤T

E|x(t)− y(t)|2 ≤
(

sup
0≤t≤T

E|x(t)|2
)
CT∆t, (2.7)

where CT depends on T but not on ξs and ∆t.

Under the hypotheses H1 and H2, Condition 2.1 is a natural condition, which has
been explained in [11]. Moreover, CT is an increasing function in T , see [11, Theorem
A.4] for details. Such a fact will be used in this paper.

3. Main results

We will prove that EDMS of the numerical method is equivalent to that of SDE
under Condition 2.1 and for sufficiently small step size, which means that we can
investigate the EDMS of the SDE from careful numerical simulations. The main
result reads as follows.
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Theorem 3.1. Suppose that a numerical method satisfies Condition 2.1. Then the
solution of SDE (1.1) is EDMS if and only if there exists a ∆t∗ > 0 such that for
any step size 0 < ∆t ≤ ∆t∗, the numerical method (1.2) is EDMS.

Theorem 3.1 comes directly from the following two lemmas. The first lemma
shows that if the SDE admits an exponential dichotomy in mean square, then the
numerical method admits an exponential dichotomy in mean square for sufficiently
small ∆t.

Lemma 3.1. Assume that the solution of SDE (1.1) is EDMS with (2.1a) and
(2.1b). Under the condition 2.1, there exists a ∆t∗ > 0 such that for any step size
0 < ∆t ≤ ∆t∗, the numerical method (1.2) is also EDMS with (2.5a) and (2.5b),

where b = 1
2a, N = 2Me

1
2aT and T = 1 + (4 logM)/a > 0.

Proof. Firstly we consider the space X1. Given x ∈ X1, choose T = 1 +
(4 logM)/a > 0 such that

Me−aT ≤ e− 3
4aT . (3.1)

For any α1 > 0, it is easy to show that

E|x(t)|2 ≤ (1 + α1)E|x(t)− y(t)|2 + (1 + 1/α1)E|y(t)|2. (3.2)

Using (2.7) and (2.1a) over [0, 2T ], we see that

sup
0≤t≤2T

E|x(t)|2 ≤ (1 + α1) sup
0≤t≤2T

E|x(t)|2C2T∆t+ (1 + 1/α1)ME|y(0)|2. (3.3)

If we take ∆t sufficiently small, then we arrive at

sup
0≤t≤2T

E|x(t)|2 ≤ (1 + 1/α1)ME|y(0)|2

1− (1 + α1)C2T∆t
. (3.4)

Taking the supremum over [T, 2T ] in (3.2) and using condition 2.1, the bound (3.4)
and condition (2.1a), we can obtain

sup
T≤t≤2T

E|x(t)|2 ≤ (1 + α1)(1 + 1/α1)ME|y(0)|2

1− (1 + α1)C2T∆t
C2T∆t+(1+1/α1)ME|y(0)|2e−aT .

We rewrite the above inequality as

sup
T≤t≤2T

E|x(t)|2 ≤ R(∆t)E|y(0)|2, (3.5)

where

R(∆t) =
(1 + α1)(1 + 1/α1)M

1− (1 + α1)C2T∆t
C2T∆t+ (1 + 1/α1)Me−aT . (3.6)

Putting α1 = 1/
√

∆t and using (3.1), we see that for sufficiently small ∆t,

R(∆t) ≤ 2
√

∆tC2TM + (1 +
√

∆t)e−
3
4aT .

The right hand side (RHS) of the above inequality is equal to e−(3/4)aT when
∆t = 0 and increases monotonically with ∆t. Hence, by taking ∆t sufficiently small,
we have

R(∆t) ≤ e− 1
2aT ,
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together with (3.5), we obtain

sup
T≤t≤2T

E|x(t)|2 ≤ e− 1
2aTE|y(0)|2 = e−

1
2aTE|x(0)|2,

which can be weakened to

sup
T≤t≤2T

E|x(t)|2 ≤ e− 1
2aT sup

0≤t≤T
E|x(t)|2.

Now let ŷ(t) be the solution to the SDE (1.1) for t ∈ [T,∞), with the initial
condition that ŷ(T ) = x(T ). Using the similar analysis above, we obtain

E|x(t)|2 ≤ (1 + α1)E|x(t)− ŷ(t)|2 + (1 + 1/α1)E|ŷ(t)|2. (3.7)

Taking the supremum over [T, 3T ], and using the Markov property for the SDE, we
may shift (2.1a) and condition 2.1 to [T, 3T ], obtaining

sup
T≤t≤3T

E|x(t)|2 ≤ (1 + α1) sup
T≤t≤3T

E|x(t)|2C2T∆t+ (1 + 1/α1)ME|x(T )|2,

which gives

sup
T≤t≤3T

E|x(t)|2 ≤ (1 + 1/α1)ME|x(T )|2

1− (1 + α1)C2T∆t
.

Now we take the supremum over [2T, 3T ] in (3.7) and obtain

sup
2T≤t≤3T

E|x(t)|2 ≤ R(∆t)E|x(T )|2 ≤ e− 1
2aT sup

T≤t≤2T
E|x(t)|2.

Continuing the above step, we can get

sup
iT≤t≤(i+1)T

E|x(t)|2 ≤ e− 1
2aT sup

(i−1)T≤t≤iT
E|x(t)|2

...

≤ e− 1
2 (i−j)aT sup

jT≤t≤(j+1)T

E|x(t)|2. (3.8)

Now let ŷ(t) be the solution to the SDE (1.1) for t ∈ [s,∞), with the initial
condition that ŷ(s) = x(s), where (j − 1)T ≤ s ≤ jT ≤ t ≤ (j + 1)T . Using the
same idea above over [s, (j + 1)T ] in (3.3) for α1 = 1/

√
∆t > 0. Note that CT is an

increasing function in T and using the Markov property for the SDE, we have

sup
jT≤t≤(j+1)T

E|x(t)|2≤ sup
s≤t≤(j+1)T

E|x(t)|2

≤ (1 + 1/α1)ME|ŷ(s)|2

1− (1 + α1)C(j+1)T−s∆t

≤(1 +
√

∆t)ME|x(s)|2

1− (∆t+
√

∆t)C2T

.

The RHS of the inequality is equal to ME|x(s)|2 when ∆t = 0 and increases mono-
tonically with ∆t. Thus for sufficiently small ∆t, we have

sup
jT≤t≤(j+1)T

E|x(t)|2 ≤ 2ME|x(s)|2. (3.9)
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It follows from (3.8) and (3.9) that

E|x(t)|2≤ sup
iT≤t≤(i+1)T

E|x(t)|2

≤2Me−
1
2 (i−j)aTE|x(s)|2

≤2Me−
1
2a(t−s−T )E|x(s)|2

with jT ≤ s ≤ (j + 1)T ≤ iT ≤ t ≤ (i+ 1)T . Therefore, (2.5a) holds with

b =
1

2
a, and N = 2Me

1
2aT .

Now we consider the space X2. Given x ∈ X2, using (2.7) and (2.1b) for any
α1 > 0 over [0, 2T ] in (3.2), we see that

sup
0≤t≤2T

E|x(t)|2 ≤ (1 + α1) sup
0≤t≤2T

E|x(t)|2C2T∆t+ (1 + 1/α1)ME|y(2T )|2. (3.10)

If we take ∆t sufficiently small, then we arrive at

sup
0≤t≤2T

E|x(t)|2 ≤ (1 + 1/α1)ME|y(2T )|2

1− (1 + α1)C2T∆t
. (3.11)

Now taking the supremum over [0, T ] in (3.2), using condition 2.1, the bound
(3.11) and condition (2.1b), we obtain

sup
0≤t≤T

E|x(t)|2 ≤ R(∆t)E|y(2T )|2, (3.12)

where R(∆t) is represented by (3.6). Letting α1 = 1/
√

∆t and using (3.1), we see
that for sufficiently small ∆t,

R(∆t) ≤ 2
√

∆tC2TM + (1 +
√

∆t)e−
3
4aT .

The RHS of the above inequality is equal to e−(3/4)aT when ∆t = 0 and increases
monotonically with ∆t. Hence, by taking ∆t sufficiently small, we may ensure that

R(∆t) ≤ e− 5
8aT .

Combined (3.12) with the above inequality, we have

sup
0≤t≤T

E|x(t)|2 ≤ e− 5
8aTE|y(2T )|2 ≤ e− 5

8aT sup
T≤t≤2T

E|y(t)|2.

In addition, for any α2 > 0, we have

E|y(t)|2 ≤ (1 + α2)E|x(t)− y(t)|2 + (1 + 1/α2)E|x(t)|2. (3.13)

Putting α2 = 1/
√

∆t, taking the supremum over [T, 2T ] in (3.13) and using (2.7),
we will see

sup
T≤t≤2T

E|y(t)|2≤((1 + α2)CT∆t+ (1 + 1/α2)) sup
T≤t≤2T

E|x(t)|2

≤((∆t+
√

∆t)CT + (1 +
√

∆t)) sup
T≤t≤2T

E|x(t)|2

≤e 1
8aT sup

T≤t≤2T
E|x(t)|2
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for sufficiently small ∆t due to the obvious fact that e
1
8aT > 1.

Therefore,
sup

0≤t≤T
E|x(t)|2 ≤ e− 1

2aT sup
T≤t≤2T

E|x(t)|2.

Now let ŷ(t) be the solution of the SDE (1.1) for t ∈ [T,∞), with the initial
condition that ŷ(T ) = x(T ). By the similar analysis above, we have

E|x(t)|2 ≤ (1 + α1)E|x(t)− ŷ(t)|2 + (1 + 1/α1)E|ŷ(t)|2. (3.14)

Taking the supremum over [T, 3T ], and using the Markov property for the SDE,
we may shift (2.1b) and condition 2.1 to [T, 3T ], obtaining

sup
T≤t≤3T

E|x(t)|2 ≤ (1 + α1) sup
T≤t≤3T

E|x(t)|2C2T∆t+ (1 + 1/α1)ME|y(3T )|2,

which gives

sup
T≤t≤3T

E|x(t)|2 ≤ (1 + 1/α1)ME|y(3T )|2

1− (1 + α1)C2T∆t
.

Now, taking the supremum over [T, 2T ] in (3.14), we have

sup
T≤t≤2T

E|x(t)|2 ≤ e− 1
2aT sup

2T≤t≤3T
E|x(t)|2.

Continuing this approach gives

sup
jT≤t≤(j+1)T

E|x(t)|2 ≤ e− 1
2aT sup

(j+1)T≤t≤(j+2)T

E|x(t)|2

...

≤ e− 1
2 (i−j)aT sup

iT≤t≤(i+1)T

E|x(t)|2. (3.15)

Now let ŷ(s) be the solution of the SDE (1.1) for s ∈ [t,∞), with the initial
condition that ŷ(t) = x(t) = ξt, where iT ≤ t ≤ (i + 1)T ≤ s ≤ (i + 2)T . Using
the same idea above over [iT, t] in (3.10) for α1 = 1/

√
∆t > 0. Note that CT is an

increasing function and using the Markov property for the SDE, we can see

sup
iT≤t≤(i+1)T

E|x(t)|2≤ sup
iT≤t≤s

E|x(t)|2

≤(1 + 1/α1)ME|ŷ(s)|2

1− (1 + α1)Cs−iT2∆t

≤(1 +
√

∆t)ME|ŷ(s)|2

1− (∆t+
√

∆t)C2T

≤4
3
ME|ŷ(s)|2

for sufficiently small ∆t. In addition, From (2.6) and (2.7) of Condition 2.1, we
have

E|ŷ(s)|2≤(1 + 1/
√

∆t)E|x(s)− ŷ(s)|2 + (1 +
√

∆t)E|x(s)|2

≤(∆t+
√

∆t)C2TBξs,2T + (1 +
√

∆t)E|x(s)|2

≤3
2
E|x(s)|2
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for sufficiently small ∆t. Thus we have

sup
iT≤t≤(i+1)T

E|x(t)|2 ≤ 2ME|x(s)|2. (3.16)

It follows from (3.15) and (3.16) that

E|x(t)|2≤ sup
jT≤t≤(j+1)T

E|x(t)|2

≤2Me−
1
2 (i−j)aTE|x(s)|2

≤2Me−
1
2a(s−t−T )E|x(s)|2

with jT ≤ t ≤ (j + 1)T ≤ iT ≤ s ≤ (i + 1)T . Thus (2.5b) holds for the numerical
method with

b =
1

2
a, and N = 2Me

1
2aT .

From the analysis above, we know that, if the solution y of SDE (1.1) is EDMS,
then there is a ∆t∗ > 0 such that for any step size 0 < ∆t ≤ ∆t∗, the numerical
solution x with the same initial data is also EDMS.

The following lemma shows that if the numerical method admits an exponential
dichotomy in mean square for small ∆t, then we can infer that the underlying SDE
admits an exponential dichotomy in mean square.

Lemma 3.2. Assume that Condition 2.1 holds and there exists a ∆t∗ > 0 such
that for any step size 0 < ∆t ≤ ∆t∗, the numerical method (1.2) for SDE (1.1) is
EDMS, i.e., satisfies (2.5a) and (2.5b), where ∆t∗ satisfies

C2T̂ e
bT̂ (∆t∗ +

√
∆t∗) + 1 +

√
∆t∗ ≤ e 1

8 bT̂ (3.17)

and
C2T̂ (∆t∗ +

√
∆t∗) +

√
∆t∗ ≤ 1. (3.18)

Then the solution of SDE (1.1) is also EDMS with (2.5a) and (2.5b) hold, where

a = 1
2b, M = 2Ne

1
2 bT̂ and T̂ = 1 + (4 logN)/b > 0.

Proof. Firstly, we illustrate that assumptions are reasonable. it is easy to see
that the left hand side (LHS) of (3.17) is equal to 1 when ∆t∗ = 0 and increases
monotonically with ∆t∗. Hence, by taking ∆t∗ sufficiently small, such that for any
step size 0 < ∆t ≤ ∆t∗, we have

C2T̂ e
bT̂ (∆t+

√
∆t) + 1 +

√
∆t ≤ e 1

8 bT̂ .

Similarly, the LHS of (3.18) is equal to 0 when ∆t∗ = 0 and increases monotonically
with ∆t∗. For any step size 0 < ∆t ≤ ∆t∗ with ∆t∗ sufficiently small, we see that

C2T̂ (∆t+
√

∆t) +
√

∆t ≤ 1.

Given y ∈ X1, choose T̂ = 1 + (4 logN)/b > 0, so that

e−
3
4 bT̂N ≤ e− 1

2 bT̂ , (3.19)

and for any α1 > 0, we have

E|y(t)|2 ≤ (1 + α1)E|x(t)− y(t)|2 + (1 + 1/α1)E|x(t)|2. (3.20)
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Using (2.7) and (2.5a) over [T̂ , 2T̂ ] in (3.20), we see that

sup
T̂≤t≤2T̂

E|y(t)|2≤(1 + α1) sup
T̂≤t≤2T̂

E|x(t)− y(t)|2 + (1 + 1/α1) sup
T̂≤t≤2T̂

E|x(t)|2

≤(1 + α1) sup
0≤t≤2T̂

E|x(t)|2C2T̂∆t+ (1 + 1/α1) sup
T̂≤t≤2T̂

E|x(t)|2

≤(1 + α1)C2T̂∆tNE|x(0)|2 + (1 + 1/α1)NE|x(0)|2e−bT̂

=

[
(1 + α1)C2T̂∆tebT̂ + (1 + 1/α1)

]
NE|x(0)|2e−bT̂ . (3.21)

Setting α1 = 1/
√

∆t in (3.21), we obtain

sup
T̂≤t≤2T̂

E|y(t)|2 ≤
[
C2T̂ e

b1T̂ (∆t+
√

∆t) + 1 +
√

∆t

]
NE|x(0)|2e−bT̂ . (3.22)

It follows from (3.17) and (3.19) that

sup
T̂≤t≤2T̂

E|y(t)|2≤e− 3
4 bT̂NE|x(0)|2

=e−
3
4 bT̂NE|y(0)|2

≤e− 1
2 bT̂E|y(0)|2

≤e− 1
2 bT̂ sup

0≤t≤T̂
E|y(t)|2. (3.23)

Now let x̂(t) denote the approximation that arises from applying the numerical
method (1.2) with x̂(T̂ ) = y(T̂ ). Then using the same analysis in (3.21)-(3.23), we
can prove

sup
2T̂≤t≤3T̂

E|y(t)|2 ≤ e− 1
2 bT̂ sup

T̂≤t≤2T̂

E|y(t)|2.

Continuing this approach gives

sup
iT̂≤t≤(i+1)T̂

E|y(t)|2 ≤ e− 1
2 bT̂ sup

(i−1)T̂≤t≤iT̂
E|y(t)|2

...

≤ e− 1
2 (i−j)bT̂ sup

jT̂≤t≤(j+1)T̂

E|y(t)|2. (3.24)

Now let ŷ(t) be the solution to the SDE (1.1) for t ∈ [s,∞), with the initial
condition that ŷ(s) = x(s), where (j − 1)T̂ ≤ s ≤ jT̂ ≤ t ≤ (j + 1)T̂ . Under the
condition (3.18) and CT is an increasing function in T , using the same idea over
[s, (j + 1)T̂ ] in (3.21)-(3.23) for α1 = 1/

√
∆t > 0 and using the Markov property

for the SDE, we can see

sup
jT̂≤t≤(j+1)T̂

E|ŷ(t)|2≤ sup
s≤t≤(j+1)T̂

E|ŷ(t)|2

≤
[
C(j+1)T̂−s(∆t+

√
∆t) + 1 +

√
∆t

]
NE|x(s)|2

≤
[
C2T̂ (∆t+

√
∆t) + 1 +

√
∆t

]
NE|ŷ(s)|2.
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Thus we have
sup

jT̂≤t≤(j+1)T̂

E|ŷ(t)|2 ≤ 2NE|ŷ(s)|2. (3.25)

It follows from (3.24) and (3.25) that

E|y(t)|2≤ sup
iT̂≤t≤(i+1)T̂

E|y(t)|2

≤2Ne− 1
2 (i−j)bT̂E|y(s)|2

≤2Ne− 1
2 b(t−s−T̂ )E|y(s)|2

with jT̂ ≤ s ≤ (j + 1)T̂ ≤ iT̂ ≤ t ≤ (i+ 1)T̂ . Then (2.1a) holds with

a =
1

2
b, and M = 2Ne

1
2 bT̂ .

Now we consider y ∈ X2, choose T̂ = 1 + (4 logN)/b > 0, so that

e−
7
8 bT̂N ≤ e− 5

8 bT̂ . (3.26)

Using (2.7) and (2.5b) over [0, T̂ ] in (3.20), we see that

sup
0≤t≤T̂

E|y(t)|2≤(1 + α1) sup
0≤t≤T̂

E|x(t)− y(t)|2 + (1 + 1/α1) sup
0≤t≤T̂

E|x(t)|2

≤(1 + α1) sup
0≤t≤2T̂

E|x(t)|2C2T̂∆t+ (1 + 1/α1) sup
0≤t≤T̂

E|x(t)|2.

≤(1 + α1)C2T̂∆tNE|x(2T̂ )|2 + (1 + 1/α1)NE|x(2T̂ )|2e−bT̂

=

[
(1 + α1)C2T̂∆tebT̂ + (1 + 1/α1)

]
NE|x(2T̂ )|2e−bT̂ . (3.27)

Letting α1 = 1/
√

∆t in (3.27), we obtain

sup
0≤t≤T̂

E|y(t)|2 ≤
[
C2T̂ e

bT̂ (∆t+
√

∆t) + 1 +
√

∆t

]
NE|x(2T̂ )|2e−bT̂ .

It follows from (3.17) and (3.26) that

sup
0≤t≤T̂

E|y(t)|2≤e− 7
8 bT̂NE|x(2T̂ )|2

≤e− 5
8 bT̂ sup

T̂≤t≤2T̂

E|x(t)|2. (3.28)

In addition, for any α2 > 0, we have

E|x(t)|2 ≤ (1 + α2)E|x(t)− y(t)|2 + (1 + 1/α2)E|y(t)|2. (3.29)

Putting α2 = 1/
√

∆t and taking the supremum over [T̂ , 2T̂ ] in (3.29) and using
(2.7), we will see

sup
T̂≤t≤2T̂

E|x(t)|2≤ 1 + 1/α2

1− (1 + α2)CT̂∆t
sup

T̂≤t≤2T̂

E|y(t)|2

=
1 +
√

∆t

1− (∆t+
√

∆t)CT̂
sup

T̂≤t≤2T̂

E|y(t)|2

≤e 1
8 b2T̂ sup

T̂≤t≤2T̂

E|y(t)|2
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for sufficiently small ∆t. Combined the above inequality with (3.28), we obtain

sup
0≤t≤T̂

E|y(t)|2 ≤ e− 1
2 b2T̂ sup

T̂≤t≤2T̂

E|y(t)|2. (3.30)

Now let x̂(t) denote the approximation that arises from applying the numerical
method (1.2) with x̂(T̂ ) = y(T̂ ). Using the same analysis as in (3.28)-(3.30), we can
prove

sup
T̂≤t≤2T̂

E|y(t)|2 ≤ e− 1
2 bT̂ sup

2T̂≤t≤3T̂

E|y(t)|2.

Continuing this approach gives

sup
jT̂≤t≤(j+1)T̂

E|y(t)|2≤e− 1
2 bT̂ sup

(j+1)T̂≤t≤(j+2)T̂

E|y(t)|2

...

≤e− 1
2 (i−j)bT̂ sup

iT̂≤t≤(i+1)T̂

E|y(t)|2. (3.31)

Now let ŷ(s) be the solution to the SDE (1.1) for s ∈ [t,∞), with the initial
condition that ŷ(t) = x(t), where iT̂ ≤ t ≤ (i + 1)T̂ ≤ s ≤ (i + 2)T̂ . Under the
condition (3.18) and CT is an increasing function in T , using the same idea over
[iT̂ , s] in (3.27) for α1 = 1/

√
∆t > 0 and using the Markov property for the SDE,

we can see

sup
iT̂≤t≤(i+1)T̂

E|ŷ(t)|2≤ sup
iT̂≤t≤s

E|ŷ(t)|2

≤[(1 + α1)Cs−iT̂∆t+ (1 + 1/α1)]NE|x(s)|2

≤[(∆t+
√

∆t)C2T̂ + (1 + ∆t)]NE|x(s)|2

≤3
2
NE|x(s)|2

for sufficiently small ∆t. In addition, From (2.6) and (2.7) of Condition 2.1, we
have

E|x(s)|2≤(1 + 1/
√

∆t)E|x(s)− ŷ(s)|2 + (1 +
√

∆t)E|ŷ(s)|2

≤(∆t+
√

∆t)C2T̂Bξs,2T̂ + (1 +
√

∆t)E|ŷ(s)|2

≤4
3
E|ŷ(s)|2,

for sufficiently small ∆t. Thus we have

sup
iT̂≤t≤(i+1)T̂

E|ŷ(t)|2 ≤ 2NE|ŷ(s)|2. (3.32)

It follows from (3.31) and (3.32) that

E|y(t)|2≤ sup
jT̂≤t≤(j+1)T̂

E|y(t)|2

≤2Ne− 1
2 (i−j)bT̂E|y(s)|2

≤2Ne− 1
2 b(s−t−T̂ )E|y(s)|2
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with jT̂ ≤ t ≤ (j + 1)T̂ ≤ iT̂ ≤ s ≤ (i+ 1)T̂ . Then (2.1b) holds with

a =
1

2
b, and M = 2Ne

1
2 bT̂ .

From the analysis above, we know that, if there exists a ∆t∗ > 0 such that for
any step size 0 < ∆t < ∆t∗, the numerical solution x for SDE (1.1) is EDMS, then
the solution y of the SDE (1.1) with the same initial data is also EDMS.

Proof of the Theorem 3.1. Let ∆t∗ = min{T, T̂}, it is easy to see that Theorem
3.1 hold, and the proof is complete.

As a special case of exponential dichotomies in mean-square, next we consider
the exponential contractions in mean-square.

Definition 3.1. The solution y(t) ∈ L2
Ft

(Ω,Rn) with initial data ξs ∈ L2
Fs

(Ω,Rn)
of SDE (1.1) is said to be exponential contraction in mean-square (ECMS) if there
exist positive constants M and a such that

E|y(t)|2 ≤Me−a(t−s)E|y(s)|2, ∀ t ≥ s ≥ 0, ∀ ξs ∈ Rn.

Definition 3.2. For a given step size ∆t, a numerical method is said to be ECMS
on the SDE (1.1) if there exist positive constants N and b such that with initial
data ξs ∈ L2

Fs
(Ω,Rn),

E|x(t)|2 ≤ Ne−b(t−s)E|x(s)|2, ∀t ≥ s ≥ 0, ∀ξs ∈ Rn.

The following result is a direct consequence of Theorem 3.1.

Theorem 3.2. Suppose that a numerical method satisfies Condition 2.1. Then the
solution of SDE (1.1) is ECMS if and only if there exists a ∆t∗ > 0 such that for
any step size 0 < ∆t ≤ ∆t∗, the numerical method is ECMS.

Finally in this section, we present one example to illustrate the equivalence of
ECMS between the numerical simulation and the solution of SDE.

Example 3.1. (Langevin’s equation(see e.g., [4,5] for details))Consider the follow-
ing equation

dX = −bXdt+ σdW, (3.33)

with initial data X(0), independent of the Brownian motion, where b > 0 is a
coefficient of friction, and σ is a diffusion coefficient. From Example 2.1, it is easy
to verify that the solution of Langevin’s equation satisfies

E|X(t)|2 ≤M1e
−2b(t−s)E|X(s)|2, ∀t ≥ s ≥ 0,

where M1 = 1 + σ2e2bT

2bE|X(0)|2 > 0, which means that the solution of SDE (3.33) is

ECMS.

Now we apply the (EM) method (1.3) to the linear SDE (3.33). In Figure 1, we
consider (3.33) with b = 2, σ = 0.2, X(0) = 1, and let a solid blue line denote the
mean of 10000 paths in mean square. We can see in Figure 1 that although X(t)
is nonsmooth along individual paths, its sample average appears to be smooth. In
addition, we can compute the maximum discrepancy between the sample average
and the exact expected value over all points ti, i.e.,

discr=norm(mean(X2)− (e−2btE|X(0)|2 +
σ2

2b
(1− e−2bt)), ′inf ′).
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Figure 1. The mean function averaged over
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Figure 2. Comparison with E|X(t)|2 and

M1e
−2b(t−s)E|y(s)|2 with s being chosen from

0, 0.2, 0.3 and 0.5 respectively.

Table 1. Calculation of min(s)

s 0 0.2 0.3 0.5
min(s) 1.8316e-004 5.3018e-004 8.4011e-004 0.0020

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

initial point

m
in

im
um

 d
iff

er
en

ce

Figure 3. Minimum difference between M1e
−2b(t−s)E|X(s)|2 starting from s and E|X(t)|2.

We can compute that discr = 0.0027. Increasing the number of samples to 50000
reduces discr to 0.0011. In Figure 2, we compare E|X(t)|2 withM1e

−2b(t−s)E|X(s)|2,

where M1 = 1 + σ2e2bT

2bE|X(0)|2 and s is chosen as 0, 0.2, 0.3 and 0.5. To illustrate the

numerical solution of (3.33) is ECMS, let

min(s) = min(M1e
−2b(t−s)E|X(s)|2 − E|X(t)|2)

denote the minimum difference between M1e
−2b(t−s)E|X(s)|2 starting from s and

E|X(t)|2. If we can compute that the numerical simulation E|X(t)|2 is located
below M1e

−2b(t−s)E|X(s)|2, that is, min(s) > 0, then we can obtain the numerical
solution of (3.33) is ECMS. Table 1 is based on the calculation of min(s). Further,
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we compare the minimum difference between M1e
−2b(t−s)E|X(s)|2 starting from s

and E|X(t)|2 in Figure 3, where s is chosen over all discrete points ti in the interval
[0, 1].

From the analysis and computation above, we know that the ECMS of numerical
method (1.2) is equivalent to the ECMS of SDE (3.33).
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