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NEW CONSTRUCTION OF HIGHER-ORDER
LOCAL CONTINUOUS PLATFORMS FOR

ERROR CORRECTION METHODS∗

Sunyoung Bu

Abstract Error correction method (ECM) [6,7] which has been recently de-
veloped, is based on the construction of a local approximation to the solution
on each time step, and has the excellent convergence order O(h2p+2), provid-
ed the local approximation has a local residual error O(hp). In this paper,
we construct a higher-order continuous local platform to develop higher-order
semi-explicit one-step ECM for solving initial value time dependent differential
equations. It is shown that special choices of parameters for the local platform
can lead to the improvement of the well-known explicit fourth and fifth order
Runge-Kutta methods. Numerical experiments demonstrate the theoretical
results.
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1. Introduction

We discuss the numerical solution of the initial value problem (IVP) given by

dφ

dt
= f(t, φ(t)), t ∈ [t0, tf ], y(t0) = φ0. (1.1)

Many numerical techniques [2, 3, 10] have been developed for the accurate and effi-
cient solution of the IVPs, including linear multi-step methods, Runge-Kutta meth-
ods and operating splitting techniques, etc. In this paper, we focus on the per-
formance of the error correction method (ECM), recently developed by P. Kim et
al. [6,7,9]. The basic idea of ECM is on the solution of the perturbed problem for a
given local approximation to the true solution on each time step. Note that the p-
stage implicit Runge-Kutta (RK) method achieves the order of accuracy 2p [5] and
it needs to solve a simultaneous system of equations at each time step by a costly
Newton-type iteration. Unlike the traditional RK methods, ECM has the excellent
convergence O(h2p+2) if one can make a local approximation y(t) to the true solu-
tion on each time step such that the local residual error f(tn, φ(tn))−φ′(tn) has the
asymptotic behavior O(hp), where p is any positive integer. In this paper, we focus
on the construction of higher order continuous local polynomial approximations on
each time step to build up much higher order ECM.
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Usually, to construct a continuous one-step method [4], one can extend an ex-
isting discrete method by including some additional function evaluations.

Ki = f
(
t0 + cih, φ0 + h

i−1∑
j=1

aijKj

)
, i = 1, · · · , ν, (1.2)

φ(t0 + θh) = φ0 + h

ν∑
i=1

bi(θ)Ki, θ ∈ [0, 1], (1.3)

where φ(t0 + θh) is a continuous approximation to φ(t) in [t0, t0 + h] and bi(θ),
i = 1, · · · , ν are polynomials of degree ≤ d, where d is a positive integer. Up to the
4th degree local approximations, the number of unknowns to calculate φ(t) at each
level is the same as the system size induced by (1.2). However, when the degree is
bigger than 4, the number of unknowns at some levels exceeds the given information
derived from (1.2). That is, it is difficult to construct the local approximations over
the 5th degree.

In the proposed scheme, we add the following function evaluations

Ki(−h) = f

t0 − cih, φ0 − h
i−1∑
j=1

aijKj

 , i = 1, · · · , ν, (1.4)

on the traditional scheme (1.2). By combining the additional function evaluations
(1.4) with (1.2), the number of unknowns can be sufficiently minimized at each
level. Moreover, the system size at each level is automatically reduced, so that
the proposed scheme can minimize the overall computational costs. That is, the
proposed scheme can be more efficient than the traditional way in the sense of
computational costs. Also, it can stably control the number of unknowns within
the given information derived from (1.4).

The aim of this paper is to construct quartic and quintic local polynomial plat-
forms to the solution on each time step, which generalize the classical fourth and
fifth order RK methods. The regime of the implicit RK methods is the basic tool to
construct the local approximation. We show that each local polynomial has several
free parameters, and the special choices of the parameters lead to the fourth and
fifth order explicit RK methods. That is, the corresponding ECMs which are spec-
ified by the parameters based on the fourth and fifth degree local platform, have
the orders of accuracy up to 10 and 12 having almost L-stability [11], respectively.

This paper is organized as follows. In Sec. 2, we briefly describe the explicit
one-step ECM. In Sec. 3, we construct quartic and quintic local approximations
generalizing most classical RK methods. Preliminary numerical results are pre-
sented in Sec. 4 to give numerical evidences for the theoretical analysis. Finally
in Sec. 5, we summarize our results and discuss some possibilities to improve the
efficiency of the new scheme.

2. Error Correction Methods (ECM)

In this section, we briefly review the ECM algorithm. Let ym be an approximation
to the true solution φ(t) at time tm by a numerical method. Let y(t) be a local
approximation for the true solution φ(t) on the local time step [tm, tm+1] satisfying

y(tm) = ym, (2.1)
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and
F (t) := f(t, y(t))− y′(t) = O(hp), t ∈ (tm, tm+1], (2.2)

for some positive number p. By using the Taylor’s expansion,

f(t, φ(t)) = f(t, y(t)) + fφ(t, y(t))(φ(t)− y(t)) +O((φ(t)− y(t))2), (2.3)

where the generic constant is depending only on the bound fφφ, one may have the
following asymptotic linear ODE

ψ′(t) = ϕ(t)ψ(t) + F (t) +O(ψ(t)2), t ∈ (tm, tm+1), (2.4)

where ψ(t) is a perturbation of φ(t) on [tm, tm+1] defined by

ψ(t) := φ(t)− y(t), t ∈ [tm, tm+1] (2.5)

and ϕ(t) is defined by
ϕ(t) = fφ(t, y(t)). (2.6)

Now, by applying the Chebyshev collocation method (CCM) to (2.4) and using
the relation in (2.5), one can have a discrete system as follows:

AnΦn =

(
Ln −

h

2
Jn
)

Φn = Anyn +
h

2
fn − (φ(tm)− ym)bn + rn, (2.7)

where bn := [l̇n0 (sn1 ), · · · , l̇n0 (snn)]T , the matrices Ln,An and Jn are defined by

An = (ajk), Jn = (Jjk), Ln = (Ljk), 1 ≤ j, k ≤ n, (2.8)

whose entries are defined by

Ljk := l̇nk (snj ), Jjk := ϕ(t(snj ))δjk, ajk := Ljk(snj )− h

2
Jjk, (2.9)

and n× 1 vectors Φn, yn, fn and rn are defined by

Φn = [φ(t(sn1 )), · · · , φ(t(snn))]T , yn = [y(t(sn1 )), · · · , y(t(snn))]T

fn = [F (t(sn1 )), · · · , F (t(snn))]T , rn = [r1, · · · , cn]T , (2.10)

where rj consist of the asymptotic term in (2.4) and the interpolation errors. Here,
lnk (s) is the interpolation polynomial of degree n induced by Chebyshev polynomials,
t = t(s) is the change of variables transforming the computational region [tm, tm+1]
to the reference domain [−1, 1] such that

t = t(s) = tm +
h

2
(1 + s), s ∈ [−1, 1], (2.11)

and snj are the Chebyshev-Gauss-Lobatto (CGL) points such that

snj = cos
(n− j)π

n
, j = 0, 1, · · · , n.

Solving the discrete system (2.7) gives

φ(t(snk )) = y(t(snk )) + µmk − (φ(tm)− ym)νmk + ωmk , k = 1, · · · , n, (2.12)
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where µmk , ν
m
k and ωmk are the kth components of the solutions for the linear systems

Anx =
h

2
fn, Anx = bn, and Anx = rn, (2.13)

respectively, k = 1, · · · , n. Hence, by using the fact t(snn) = tm+1 and truncating
the last two unknown terms in the right hand side of (2.12), the ECM is defined as
follows:

ym+1 = y(tm+1) + µmn , m ≥ 0; y0 = φ0. (2.14)

For more details on ECM, we refer to [6, 7].

3. Construction of the higher order local continuous
platform

In this section, we construct the local continuous approximation based on polyno-
mials up to degree 5 which serves as a basis of the ECM. Prior to the construction,
it is convenient to introduce and simplify notations to handle derivatives. We de-
note f0 = 1 and f1 = f(t, φ) which are derivatives of t and φ(t) with respect to t,
respectively. Also, we write the second derivative of φ with respect to t as

φ′′ = (f1)′ =
∂f1

∂t

dt

dt
+
∂f1

∂φ

dφ

dt
= f1

t f
0 + f1

φf
1. (3.1)

If we write z0 for ∂z
∂t and z1 for ∂z

∂y , then we get

φ′′ = f1
t f

0 + f1
φf

1 =

1∑
i=1

f1
i f

i := f1
j f

j , (3.2)

where the last equality means the Einstein summation symbol, which says that any
repeated subscript or superscript in a multiplication term is to be summed over
its range (0 to 1). Interested readers are referred to [4] for further details on the
Einstein summation symbol.

Based on these notations, we will consider Taylor’s expansion of φ(t) at time
t = tm as follows:

φ(t) =φ(tm) + (t− tm)f1 +
(t− tm)2

2
f1
j f

j +
(t− tm)3

6

(
f1
jkf

jfk + f1
j f

j
kf

k
)

+
(t− tm)4

24

(
f1
jklf

jfkf l + 3f1
jkf

j
l f

kf l + f1
j f

j
klf

kf l + f1
j f

j
kf

k
l f

l
)

+
(t− tm)5

120

(
f1
jklmf

jfkf lfm + f1
j f

j
klmf

kf lfm + 6f1
jklf

jfkf lmf
m

+ 4f1
jkf

jfklmf
lfm + f1

j f
j
kf

k
lmf

lfm + 7f1
jkf

jfkl f
l
mf

m + 3f1
jlf

j
kf

kf lmf
m

+f1
j f

j
kf

k
l f

l
mf

m
)

+O(h6), (3.3)

where coefficients are evaluated at t = tm. Also, the Taylor’s expansion of f(t +



Higher order local platforms for ECM 447

α, y + β) at the point (t, y) is given by

f(t+ α, y + β) =f1 + αf1
0 + βf1

1 +
1

2

(
α2f1

00 + 2αβf1
01 + β2f1

11

)
+

1

6

(
α3f1

000 + 3α2βf1
001 + 3αβ2f1

011 + β3f1
111

)
+

1

24

(
α4f1

0000 + 4α3βf1
0001 + 6α2β2f1

0011 + 4αβ3f1
0111

+β4f1
1111

)
+ · · · . (3.4)

3.1. Local polynomial approximation of degree p=4

In this subsection, we give the technique to construct a local polynomial approxi-
mation of degree 4 for which the seven unknown coefficients f1

j f
j , f1

jkf
jfk, f1

j f
j
kf

k,

f1
jklf

jfkf l,f1
jkf

j
l f

kf l, f1
j f

j
klf

kf l and f1
j f

j
kf

k
l f

l in (3.3) must be determined. We

begin with the determination of three unknowns f1
j f

j ,f1
jkf

jfk and f1
jklf

jfkf l.

3.1.1. 1st level

For this, we consider

K1,i = f(tm + α1,ih, ym + α1,ihf(tm, ym)), i = 0, 1, 2, (3.5)

where α1,i are arbitrary parameters to be determined. Applying the Taylor’s ex-
pansion (3.4) to (3.5) leads to the following three equations for f1

j f
j , f1

jkf
jfk and

f1
jklf

jfkf l.

K1,i = f1 + α1,ihf
1
j f

j +
α2

1,ih
2

2
f1
jkf

jfk +
α3

1,ih
3

6
f1
jklf

jfkf l +O(h4), i = 0, 1, 2.

(3.6)
Hence, by solving these simultaneous equations, a 3 by 3 system is needed to solve for
f1
j f

j , f1
jkf

jfk and f1
jklf

jfkf l. Notice that to generally construct a local polynomial
approximation of degree p, we need to solve a p by p matrix. However, it is more
expensive and complicated to solve when p becomes large. In this paper, unlike the
traditional way to solve the 3 by 3 system, we introduce a new notation K̂1,i to
reduce the system size to a 2 by 2 system using K1,i(h) and K1,i(−h) as follows:

K̂1,i := K1,i(h)−K1,i(−h), i = 0, 1, (3.7)

where K1,i(h) = K1,i and

K1,i(−h) := f(tm − α1,ih, ym − α1,ihf(tm, ym))

= f1 − (α1,ih)f1
j f

j +
(α1,ih)2

2
f1
jkf

jfk − (α1,ih)3

6
f1
jklf

jfkf l +O(h4).

(3.8)
Then,

K̂1,i = 2(α1,ih)f1
j f

j + h3
α3

1,i

3
f1
jklf

jfkf l +O(h4). (3.9)

If we define γ1 and γ3 as follows:γ1

γ3

 = A−1
1

 K̂1,0

K̂1,1

 , (3.10)
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where A1 =

2α1,0h
α3

1,0h
3

3

2α1,1h
α3

1,1h
3

3

, then f1
j f

j and f1
jklf

jfkf l can be obtained

 f1
j f

j

f1
jklf

jfkf l

 =

γ1 +O(h3)

γ3 +O(h)

 , (3.11)

Note that for determination of the coefficients, the matrix A1 should be non-singular
or det(A1) = 2

3α1,0α1,1h
4(α2

1,1 − α2
1,0) 6= 0, so α1,0 and α1,1 should satisfy the

following conditions: α1,i 6= 0, i = 0, 1

α1,1 6= ± α1,0.
(3.12)

Based on the calculation for (3.10), K1,i can be rewritten as

K1,i = f1 + α1,ihγ1 +
α2

1,ih
2

2
f1
jkf

jfk +
α3

1,ih
3

6
γ3 +O(h4). (3.13)

Since γ1 and γ3 are now known values, f1
jkf

jfk is simply determined by

f1
jkf

jfk = γ2 +O(h2)

=
(

2K1,0 − 2f1 − 2α1,0hγ1 −
α3

1,0h
3

3
γ3

)
/α2

1,0h
2 +O(h2),

(3.14)

provided α1,0 6= 0.

3.1.2. 2nd level

Next, for the determination of the unknown coefficients f1
j f

j
kf

k, f1
jkf

j
l f

kf l and

f1
j f

j
klf

kf l, we consider

K2,i := f(tm + α2,ih, ym + hδ2,i), δ2,i = β2,if
1 + (α2,i − β2,i)K1,i (3.15)

where α2,i and β2,i are parameters to be determined. Applying Taylor’s expansion
and K1,i to Eq. (3.15) leads to the following equations

K2,i = f1 + (α2,ih)γ1 +
1

2
(α2,ih)2γ2 + µiα1,ih

2f1
j f

j
kf

k +
1

6
(α2,ih)3γ3

+ h3µi
α2

1,i

2
f1
j f

j
klf

kf l + h3µiα1,iα2,if
1
jkf

jfkl f
l +O(h4),

(3.16)

where µi = α2,i − β2,i for i = 0, 1, 2. Similarly above, instead of solving a 3 by 3

system, we introduce a new notation K̂2,i by defining K̂2,i = K2,i(h) −K2,i(−h).
Then

K̂2,i = D̂i + h3µi(α1,i)
2f1
j f

j
klf

kf l + 2h3µiα1,iα2,if
1
jkf

jfkl f
l

+O(h4), i = 0, 1,
(3.17)
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where D̂i = 2(α2,ih)γ1 + 1
3 (α2,ih)3γ3. By solving the system (3.17), one may deter-

mine f1
j f

j
klf

kf l and f1
jkf

jfkl f
l with the formula f1

j f
j
klf

kf l

f1
jkf

jfkl f
l

 =

γ5 +O(h)

γ6 +O(h)

 , (3.18)

whereγ5

γ6

 = B−1
1

 K̂2,0 − D̂0

K̂2,1 − D̂1

 , B1 :=

µ0α
2
1,0h

3 2µ0α1,0α2,0h
3

µ1α
2
1,1h

3 2µ1α1,1α2,1h
3

 . (3.19)

As mentioned above, for the determination of coefficients f1
j f

j
klf

kf l and f1
jkf

jfkl f
l,

the matrixB1 is non-singular. Since det(B1) = 2h6µ0µ1α1,0α1,1(α1,0α2,1−α1,1α2,0) 6=
0, the conditions to be satisfied are as follows:

α1,i 6= 0 i = 0, 1,

α2,i 6= β2,i i = 0, 1,

α1,0α2,1 − α1,1α2,0 6= 0.

(3.20)

Based on the previous calculation, K2,i can be simplified as follows:

K2,i = f1 + (α2,ih)γ1 +
1

2
(α2,ih)2γ2 + µiα1,ih

2f1
j f

j
kf

k

+
1

6
(α2,ih)3γ3 + h3µi

α2
1,i

2
γ5 + h3µiα1,iα2,iγ6,

(3.21)

Hence, f1
j f

j
kf

k is easily obtained by

f1
j f

j
kf

k = γ4 +O(h2)

=
(
K2,0 − f1 − (α2,0h)γ1 +

1

2
(α2,0h)2γ2 −

1

6
(α2,0h)3γ3

+ h3µ0

α2
1,0

2
γ5 + h3µ0α1,0α2,0γ6

)
/µ0α1,0h

2 +O(h2),

(3.22)

with µ0α1,0 6= 0.

3.1.3. 3rd level

Finally, for the determination of the remaining unknown coefficient f1
j f

j
kf

k
l f

l in the
expression (3.3), we consider

K3 = f(tm + α3h, ym + hρ3) (3.23)

where
ρ3 = β3,0f

1 + β3,1K1,0 + (α3 − β3,0 − β3,1)K2,0, (3.24)

where β3,i, i = 0, 1 and α3 are arbitrary parameters to be determined.

f1
j f

j
kf

k
l f

l = γ7 +O(h)

=
1

h3ν3

(
K3 − f1 − γ1hα3 − h2

(
ν1γ4 +

α2
3

2
γ2

)
− h3

(
ν2γ5 + α3ν1γ6 +

α3
3

6
γ3

))
+O(h),

(3.25)
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where
ν1 := β3,1(α1,0 − α2,0) + (α3 − β3,0)α2,0,

ν2 :=
α2

1,0

2
β3,1 +

α2
2,0

2
(α3 − β3,0 − β3,1),

ν3 := (α3 − β3,0 − β3,1)(α2,0 − β2,0)α1,0.

(3.26)

Finally, by substituting (3.10), (3.14), (3.19), (3.22) and (3.25) into (3.3) and
approximating φ(tm) with ym, one may define the local approximation y(t) of degree
4 by

y(t) = ym + (t− tm)f(tm, ym) +
(t− tm)2

2
γ1 +

(t− tm)3

6

(
γ2 + γ4

)
+

(t− tm)4

24

(
γ3 + 3γ6 + γ5 + γ7

)
,

(3.27)

where γi, i = 1, · · · , 7, are defined in (3.10), (3.14), (3.19), (3.22) and (3.25).

3.2. Local polynomial approximation of degree p=5

Similarly to the previous subsection, in this subsection, we construct a local poly-
nomial approximation of degree 5 by finding approximations for 15 unknown coef-
ficients in the equation (3.3), which are the total derivatives of φ with order larger
than 2.

3.2.1. 1st level

First, we start with finding the leading coefficients of each order term in (3.4), f1
j f

j ,

f1
jkf

jfk, f1
jklf

jfkf l and f1
jklmf

jfkf lfm using

K1,i := f(tm + α1,ih, ym + α1,ihf(tm, ym)), i = 0, 1, 2, 3 (3.28)

where α1,i are arbitrary parameters to be determined. The Taylor expansion can be
applied to Eq. (3.28), and then following equations for f1

j f
j , f1

jkf
jfk, f1

jklf
jfkf l

and f1
jklmf

jfkf lfm can be obtained.

K1,i = f1 + (α1,ih)f1
j f

j +
(α1,ih)2

2
f1
jkf

jfk +
(α1,ih)3

6
f1
jklf

jfkf l

+
(α1,ih)4

24
f1
jklmf

jfkf lfm +O(h5) i = 0, 1, 2, 3.

(3.29)

As mentioned above, instead of solving a 4 by 4 system, we introduce a new
notation K̂1,i to reduce the system size using K1,i(h) and K1,i(−h),

K̂1,i = K1,i(h)−K1,i(−h), (3.30)

where K1,i(h) = K1,i and

K1,i(−h) := f(tm − α1,ih, ym − α1,ihf(tm, ym))

= f1 − (α1,ih)f1
j f

j +
(α1,ih)2

2
f1
jkf

jfk − (α1,ih)3

6
f1
jklf

jfkf l

+
(α1,ih)4

24
f1
jklmf

jfkf lfm +O(h5).

(3.31)
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Then,

K̂1,i = 2α1,ihf
1
j f

j + h3
α3

1,i

3
f1
jklf

jfkf l. (3.32)

Since  f1
j f

j

f1
jklf

jfkf l

 =

γ1 +O(h4)

γ3 +O(h2)

 , (3.33)

the coefficients can be determined byγ1

γ3

 = A−1
1

 K̂1,0

K̂1,1

 , (3.34)

where A1 =

2α1,0h
α3

1,0h
3

3

2α1,1h
α3

1,1h
3

3

. Note that for determination of the coefficients,

the matrix A1 should be non-singular or det(A1) = 2
3α1,0α1,1h

4(α2
1,1 − α2

1,0) 6= 0.
Therefore,α1,0 and α1,1 should satisfy the following conditions:α1,i 6= 0, i = 0, 1

α1,1 6= ±α1,0.
(3.35)

Similarly above, we introduce a new notation K̃1,i as follows:

K̃1,i = K1,i(h) +K1,i(−h), (3.36)

then we get

K̃1,i = 2f1 + h2α2
1,if

1
jkf

jfk + h4
α4

1,i

12
f1
jklmf

jfkf lfm. (3.37)

Since  f1
jkf

jfk

f1
jklmf

jfkf lfm

 =

γ2 +O(h3)

γ4 +O(h)

 , (3.38)

the coefficients can be determined by solving these equationsγ2

γ4

 = A−1
2

 K̃1,0 − 2f1

K̃1,1 − 2f1

 , (3.39)

where A2 =

α2
1,0h

2 α4
1,0h

4

12

α2
1,1h

2 α4
1,1h

4

12

 and A2 should be non-singular. Since the det(A2) =

1
12α

2
1,0α

2
1,1h

6(α2
1,1 − α2

1,0) 6= 0, the condition to be satisfied for determination is the
same as (3.35). Therefore, the conditions for the parameters areα1,i 6= 0, i = 0, 1

α1,1 6= ±α1,0.
(3.40)

and α1,2 and α1,3 become free parameters to be assigned arbitrarily without any
constraints, unlike the traditional way.
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Remark 3.1. Notice that the traditional scheme generates a 4 by 4 system to
solve (3.28), while the proposed scheme needs only two 2 by 2 systems ((3.34)
and (3.39)), so that it can reduce the total computational costs. This is one of
remarkable improvements of the proposed scheme.

3.2.2. 2nd level

Secondly, we consider

K2,i := f(tm + α2,ih, ym + hδ2,i), δ2,i = β2,if
1 + (α2,i − β2,i)K1,i (3.41)

where α2,i and β2,i are parameters to be determined. Applying Taylor’s expansion
and K1,i to Eq. (3.41) leads to the following equations

K2,i = f1 + (α2,ih)γ1 +
1

2
(α2,ih)2γ2 + µiα1,ih

2f1
j f

j
kf

k +
1

6
(α2,ih)3γ3

+ h3µi
(α1,i)

2

2
f1
j f

j
klf

kf l + h3µiα1,iα2,if
1
jkf

jfkl f
l +

1

24
(α2,ih)4γ4

+ h4µi
α3

1,i

6
f1
j f

j
klmf

kf lfm + h4µi
α2

1,i

2
α2,if

1
jkf

jfklmf
lfm

+ h4µ2
i

α2
1,i

2
f1
jkf

j
l f

lfkmf
m + h4µi

α2
2,i

2
α1,if

1
jklf

jfkf lmf
m

+O(h5) i = 0, 1, 2, 3,

(3.42)

where µi = α2,i−β2,i. Since there are 7 unknowns, we need a 7 by 7 matrix to solve
(3.41) in the traditional way. However, unnecessary values K1,i in (3.41) should be
calculated to generate the relevant conditions, so it leads expensive computational
costs and unnecessary storage costs. To hurdle this drawback, similarly above, we
introduce a new notation K̂2,i by K̂2,i = K2,i(α2,i, β2,i, h)−K2,i(α2,i, β2,i,−h), then

K̂2,i = D̂i + h3µiα
2
1,if

1
j f

j
klf

kf l + 2h3µiα1,iα2,if
1
jkf

jfkl f
l, (3.43)

where D̂i = 2(α2,ih)γ1 + 1
3 (α2,ih)3γ3. Therefore, by solving these equations (3.43),

one may determine f1
j f

j
klf

kf l and f1
jkf

jfkl f
l with the formula f1

j f
j
klf

kf l

f1
jkf

jfkl f
l

 =

γ5 +O(h2)

γ6 +O(h2)

 , (3.44)

whereγ5

γ6

 = B−1
1

 K̂2,0 − D̂0

K̂2,1 − D̂1

 , B1 =

µ0α
2
1,0h

3 2µ0α1,0α2,0h
3

µ1α
2
1,1h

3 2µ1α1,1α2,1h
3

 . (3.45)

For the determination of coefficients f1
j f

j
klf

kf l and f1
jkf

jfkl f
l, the matrix B1 is non-

singular. Since det(B1) = 2h6µ0µ1α1,0α1,1(α1,0α2,1 − α1,1α2,0) 6= 0, the condition
to be satisfied is as follows: 

α1,i 6= 0, i = 0, 1,

α2,i 6= β2,i, i = 0, 1,

α1,0α2,1 − α1,1α2,0 6= 0.

(3.46)
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Similarly, we again introduce another notation K̃2,i = K2,i(α2,i, β2,i, h)
+K2,i(−α2,i,−β2,i, h). Then, one may check that

K̃2,i = D̃i + h4µi(α1,i)
2α2,if

1
jkf

jfklmf
lfm + h4µ2

iα
2
1,if

1
jkf

j
l f

lfkmf
m, (3.47)

where D̃i = 2f1 +(α2,ih)2γ2 +2h3µiα1,iα2,iγ6 + 1
12 (α2,ih)4γ4. Therefore, by solving

these equations (3.47) to determine f1
jkf

jfklmf
lfm and f1

jkf
j
l f

lfkmf
m, we can get f1

jkf
jfklmf

lfm

f1
jkf

j
l f

lfkmf
m

 =

γ7 +O(h)

γ8 +O(h)

 , (3.48)

whereγ7

γ8

 = B−1
2

 K̃2,0 − D̃0

K̃2,1 − D̃1

 , B2 =

µ0α
2
1,0α2,0h

4 µ2
0α

2
1,0h

4

µ1α
2
1,1α2,1h

4 µ2
1α

2
1,1h

4

 . (3.49)

To satisfy the non-singularity of B2, the following conditions should be satisfied
α1,0 6= 0, i = 0, 1,

α2,0 6= β2,0, i = 0, 1,

α2,0µ1 − µ0α2,1 6= 0, α2,1β2,0 − β2,1α2,0 6= 0.

(3.50)

Based on the calculation for K̂2,i and K̃2,i, we lastly defineK2,i = K2,i(α2,i, β2,i, h)−
K2,i(−α2,i,−β2,i,−h). Then one may check that

K2,i = Di + 2h2µiα1,if
1
j f

j
kf

k +
h4

3
µiα

3
1,if

1
j f

j
klmf

kf lfm

+ h4µiα
2
2,iα1,if

1
jklf

jfkf lmf
m

(3.51)

where Di = 2α2,ihγ1 + 1
3 (α2,ih)3γ3 + h3µiα

2
1,iγ5. Therefore, by solving these e-

quations (3.51), one may determine f1
j f

j
kf

k, f1
j f

j
klmf

kf lfm, and f1
jklf

jfkf lmf
m as

follows:
f1
j f

j
kf

k

f1
j f

j
klmf

kf lfm

f1
jklf

jfkf lmf
m

 =


γ9 +O(h3)

γ10 +O(h)

γ11 +O(h)

 = B−1
3


K2,0 −D0 +O(h3)

K2,1 −D1 +O(h)

K2,2 −D2 +O(h)

 , (3.52)

where B3 =


2µ0α1,0h

2 µ0
(α1,0)3

3 h4 µ0(α2,0)2α1,0h
4

2µ1α1,1h
2 µ1

(α1,1)3

3 h4 µ1(α2,1)2α1,1h
4

2µ2α1,2h
2 µ2

(α1,2)3

3 h4 µ2(α2,2)2α1,2h
4

 with the conditions


α1,0 6= 0, i = 0, 1, 2,

α2,0 6= β2,0, i = 0, 1, 2,

α2
1,1α

2
2,2 − α2

1,2α
2
2,1 − α2

1,0α
2
2,2 + α2

1,0α
2
2,1 + α2

2,0α
2
1,2 − α2

2,0α
2
1,1 6= 0.
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Remark 3.2. Note that instead of solving a 7 by 7 system directly with generating
unnecessary function values done in traditional way, the proposed scheme can reduce
the system to a 3 by 3 and two 2 by 2 systems without any additional function values,
so that it can reduce the total computational costs and storage costs. This is the
other remarkable improvement of the proposed scheme.

3.2.3. 3rd level

We need to determine the remaining unknown coefficients by considering

K3,i = f(tm + α3,ih, ym + hρ3,i), (3.53)

where
ρ3,i = β3,if

1 + ω3,iK1,i + (α3,i − β3,i − ω3,i)K2,i. (3.54)

Here, α3,i, β3,i and ω3,i are arbitrary parameters to be determined. Similarly above,
one may check that

K3,i = f1 + α3,ihγ1 + h2
(α2

3,i

2
γ2 + (α1,iω3,i + τiα2,i)γ9

)
+ h3

(α3
3,i

6
γ3 +

1

2
(α2

1,iω3,i + τiα
2
2,i)γ5 + τiµiα1,if

1
j f

j
kf

k
l f

l

+ α3,i(α1,iω3,i + τiα2,i)γ6

)
+ h4

(α4
3,i

24
γ4 +

1

6
(α3

1,iω3,i + τiα
3
2,i)γ10

+ τiµi
α2

1,i

2
f1
j f

j
kf

k
lmf

lfm + τiµiα1,iα2,if
1
j f

j
klf

kf lmf
m

+
1

2
(α2

1,iω3,i + τiα
2
2,i)α3,iγ7 +

1

2
(α1,iω3,i + τiα2,i)

2γ8

+ τiµiα1,iα3,if
1
jkf

jfkl f
l
mf

m +
α2

3,i

2
(α1,iω3,i + τiα2,i)γ11

)
,

(3.55)

where τi = α3,i−β3,i−ω3,i and µi = α2,i−β2,i. Since f1
j f

j
klf

kf lmf
m = f1

jkf
jfkl f

l
mf

m,
there are 3 unknowns to be solved. Similarly above, we introduce a new notation
K̂3,i = K3,i(h)−K3,i(−h), then

K̂3,i = D̂ + 2h3τiµiα1,if
1
j f

j
kf

k
l f

l, (3.56)

where D̂ = 2(α3,ih)γ1+ 1
3 (α3,ih)3γ3+h3(α2

1,iω3,i+τiα
2
2,i)γ5+2h3(α1,iω3,i+τiα2,i)γ6.

Hence, f1
j f

j
kf

k
l f

l can be obtained by

f1
j f

j
kf

k
l f

l = γ12 +O(h2), (3.57)

where
γ12 = (K̂3,0 − D̂)/2τ0µ0α1,0h

3, provided τ0µ0α1,0 6= 0. (3.58)

Similarly, for K̃3,i = K3,i(h) +K3,i(−h), K̃3,i can be rewritten as follows:

K̃3,i = D̃3,i + τiµi
α2

1,i

2
f1
j f

j
kf

k
lmf

lfm

+ τiµiα1,i(α2,i + α3,i)f
1
jkf

jfkl f
l
mf

m,

(3.59)
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where D̃3,i = 2f1 + h2
(
α2

3,iγ2 + 2(α1,iω3,i + τiα2,i)γ9

)
+ h4

(
α4

3,i

12 γ4 + 1
3 (α3

1,iω3,i +

τiα
3
2,i)γ10+(α2

1,iω3,i+τiα
2
2,i)α3,iγ7+(α1,iω3,i+τiα2,i)

2γ8+α2
3,i(α1,iω3,i+τiα2,i)γ11

)
.

Since  f1
j f

j
kf

k
lmf

lfm

f1
jkf

jfkl f
l
mf

m

 =

γ13 +O(h)

γ14 +O(h)

 , (3.60)

the coefficients can be determined by solving the following systemγ13

γ14

 = C−1

 K̃3,0 − D̃3,0

K̃3,1 − D̃3,1

 , (3.61)

where C =

τ0µ0α
2
1,0h

4 2τ0µ0α1,0(α2,0 + α3,0)h4

τ1µ1α
2
1,1h

4 2τ1µ1α1,1(α2,1 + α3,1)h4

.

3.2.4. 4th level

Finally, for the determination of the remaining unknown coefficient f1
j f

j
kf

k
l f

l
mf

m

in the expression, we consider

K4 := f(tm + α4h, ym + hσ), i = 0, 1, 2, (3.62)

where

σ = β4,0f
1 + β4,1K1,0 + β4,2K2,0 + (α4 − β4,0 − β4,1 − β4,2)K3,0,

where α4 and β4,i are arbitrary parameters to be determined. Similarly above, one
may check that

K4 = f1 + α4hγ1 + h2

(
α2

4

2
γ2 + ν1γ9

)
+ h3

(α3
4

6
γ3 + ν2γ5

+ ν3γ12 + α4ν1γ6

)
+ h4

(α4
4

24
γ4 + ν4γ10 + ν5γ13 +

α2
4

2
ν1γ11

+ α4ν2γ7 +
1

2
ν2

1γ8 + ν7γ14 + α4ν3γ14 + ν6f
1
j f

j
kf

k
l f

l
mf

m
)
,

(3.63)

where

ν1 = β4,1α1,0 + β4,2α2,0 + κα3,0,

ν2 = (β4,1α
2
1,0 + β4,2α

2
2,0 + κα2

3,0)/2,

ν3 = β4,2µ0α1,0 + κ(τ0α2,0 + α1,0ω3,0),

ν4 = (β4,1α
3
1,0 + β4,2α

3
2,0 + κα3

3,0)/6,

ν5 = (β4,2µ0α
2
1,0 + κ(τ0α

2
2,0 + α2

1,0ω3,0))/2,

ν6 = κτ0µ0α1,0,

ν7 = β4,2µ0α1,0α2,0 + κα3,0(τ0α2,0 + α1,0ω3,0), (3.64)
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with κ = α4 − β4,0 − β4,1 − β4,2. Since f1
j f

j
kf

k
l f

l
mf

m=γ15 +O(h),

γ15 = =
1

h4ν6

(
K4 − f1 − α4hγ1 − h2

(α2
4

2
γ2 + ν1γ9

)
− h3

(α3
4

6
γ3

+ ν2γ5 + ν3γ12 + α4ν1γ6

)
− h4

(α4
4

24
γ4 + ν4γ10 + ν5γ13

+
α2

4

2
ν1γ11 + α4ν2γ7 +

1

2
ν2

1γ8 + (ν7 + α4ν3)γ14

))
.

(3.65)

By substituting into (3.3), and one may define the local approximation of degree 5
by

φ(t) = φ(tm) + (t− tm)f1 +
(t− tm)2

2
γ1 +

(t− tm)3

6
(γ2 + γ9)

+
(t− tm)4

24
(γ3 + 3γ6 + γ5 + γ12) +

(t− tm)5

120
(γ4 + γ10

+6γ11 + 4γ7 + γ13 + 7γ14 + 3γ8 + γ15) +O(h6),

(3.66)

where γi, i = 1, · · · , 15, are defined in (3.34), (3.39), (3.45), (3.49), (3.52), (3.57),
(3.61) and (3.65).

3.3. Analysis

We will show that a special choice of the parameters appeared in (3.27) gives the
classical fourth order RK method. We recall the fourth order RK method described
by

ym+1 = ym +
h

6

(
k1 + 2k2 + 2k3 + k4

)
,

k1 = f(tm, ym), k2 = f(tm +
h

2
, ym +

h

2
k1),

k3 = f(tm +
h

2
, ym +

h

2
k2), k4 = f(tm + h, ym + hk3). (3.67)

Lemma 3.1. For the local approximation y(t) in (3.27), the value y(tm+1) is the
same with the approximation ym+1 in (3.67) provided we take

α3 = 1, α1,0 = α2,0 =
1

2
, β2,0 = β3,i = 0, i = 0, 1, (3.68)

and the other parameters αi,j and βi,j are arbitrary parameters so that the matrices
Ai and B in (3.10) and (3.19) are nonsingular.

Proof. Using the coefficients defined in (3.68), we can easily check that

K1,0 = k2, K2,0 = k3, K3 = k4.

Remark 3.3. Compared the 4th order Runge-Kutta(RK) methods to our formula-
tion, the proposed scheme needs more function evaluations or more stages. However
unlike the traditional RK formulation which is calculated sequentially using all val-
ues in previous stages, our formulation can be calculated all function values in each
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stage simultaneously using vector calculations [12]. That is, using vector calcula-
tions, function values at each level count as only one function evaluation. Therefore,
the calculation time for both traditional RK scheme and our formulation are exactly
the same. From this point of view, one can say that each local approximation of
degree p requires p level values for the slope function f .

Remark 3.4. For a simple ODE equation

y′ = λy, y(0) = 1, (3.69)

the fourth order local polynomial approximation is calculated as follows: Since

K1,i(h) = λ(1 + α1,iλh)ym,

K1,i(−h) = λ(1− α1,iλh)ym, (3.70)

for any coefficients α1,0 and α1,1, the unknowns γ1, γ2 and γ3 in (3.10) and (3.14)
are calculated by γ1

γ3

 = A−1

K1,0(h)−K1,0(−h)

K1,1(h)−K1,1(−h)


= A−1

 2α1,0λ
2hym

2α1,1λ
2hym

 =

λ2ym

0

 ,

(3.71)

and

γ2 =
(

2K1,0 − 2f − 2α1,0hγ1 −
α3

1,0h
3

3

)
/α2

1,0h
2 = 0. (3.72)

For any coefficients α2,i and β2,i,

K2,i(h) = λym

(
1 + α2,iλh+ (α2,i − β2,i)α1,iλ

2h2
)
,

K2,i(−h) = λym

(
1− α2,iλh+ (α2,i − β2,i)α1,iλ

2h2
)
. (3.73)

Based on the proposed algorithm, γ5 and γ6 are calculated byγ5

γ6

 = B−1
1

K2,0(h)−K2,0(−h)− D̂0

K2,1(h)−K2,1(−h)− D̂1

 =

 0

0

 , (3.74)

where B1 and D̂i are defined in (3.19) and γ4 is

γ4 =
(
K2,0 − f1 − (α2,0h)γ1 +

1

2
(α2,0h)2γ2 −

1

6
(α2,0h)3γ3

+ h3µ0

α2
1,0

2
γ5 + h3µ0α1,0α2,0γ6

)
/µ0α1,0h

2 = λ3ym, (3.75)

K3 =λym

(
1 + α3λh+ β3,1α1,0λ

2h2

+ (α3 − β3,0 − β3,1)λh(α2,0λh+ µ0α1,0λ
2h2)

)
. (3.76)
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γ7 is obtained by

γ7 =
1

h3ν3

(
K3 − f − γ1hα3 − h2

(
ν1γ4 +

α2
3

2
γ2

)
− h3

(
ν2γ5 + α3ν1γ6 +

α3
3

6
γ3

))
= λ4ym.

(3.77)

Summarizing all calculations above, the approximation can be written as follows:

y(t) = ym + (t− tm)(λym) +
(t− tm)2

2
(λ2ym) +

(t− tm)3

6
(λ3ym)

+
(t− tm)4

24
(λ4ym) +O(h5).

(3.78)

This is the exactly the same as the Taylor expansion of exp(λt) at t = tm of (3.69)
up to 4th degree.

4. Numerical Results

In this section, we show two numerical results for both non-stiff and stiff problem-
s. For the comparison of the numerical results, the maximum error Err(h) and
convergence rates are presented, which are defined by

Err(h) = max
1≤i≤n

||φ(ti)− yi||∞, rate =
log(Err(h1)/Err(h2))

log(h1/h2)
, (4.1)

respectively, where || · ||∞ denotes the maximum norm and hi, i = 1, 2 are given
two time step sizes. For the convenience, we denote the ECM algorithm based on
the p degree local approximation by ECMp.

4.1. A simple nonlinear problem

As the first example, we consider a nonlinear initial value problem

dφ

dt
=
κφ(t)(1− φ(t))

2φ(t)− 1
t ∈ (0, 2]; φ(0) =

5

6
, (4.2)

whose solution is φ(t) = 1
2 +

√
1
4 −

5
36 exp(−κt) with a parameter κ.

To investigate the convergence of ECM based on the proposed local platform-
s, the problem (4.2) is solved on the interval [0, 2] with different step sizes h =
2−n, n = 1, 2, 3, 4 with the parameter κ = 1 which is represented for non-stiffness.
As seen in Table 1, the numerical convergence order of ECM based on the fourth
and fifth degree local platforms are the theoretical orders 10 and 12 stated in Sec. 2,
respectively.

To examine the effectiveness of the proposed algorithm, we compare it with
the traditional algorithm based on the 4th degree polynomial for the same setting
described above. Fig. 1 shows that the convergence behaviors of both algorithms
are quite similar and the convergence orders are about 10. It can be also seen that
the accuracy of the proposed scheme is lower than that of the traditional scheme
at the lower accuracy, but the difference is getting smaller and even the accuracy
of the proposed scheme is better at the higher accuracy requirement.
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Table 1. Numerical comparison of ECM4 and ECM5 for non-stiffness (κ = 1)

ECM4 ECM5

n Err(h) rate Err(h) rate

1 5.0417 · 10−6 – 2.8407 · 10−4 −−
2 9.8011 · 10−10 12.3287 1.6905 · 10−8 14.0365

3 4.9449 · 10−13 10.9528 7.2580 · 10−12 11.1856

4 2.2204 · 10−16 11.1209 1.5543 · 10−15 12.1891
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Figure 1. Comparison of convergence for traditional method and proposed scheme

Additionally, to examine the behavior of ECM for stiffness, the problem (4.2)
is solved on the interval [0, 0.5] with the parameter κ = 20, which gives a mild
stiffness. The numerical results with different step size, h = 2−n, n = 4, 5, 6, are
reported in Table 2. Table 1 shows that the numerical evidence can support the
theoretical convergence analyzed in Sec. 2.

Table 2. Numerical comparison of ECM4 and ECM5 for stiffness (κ = 20)

ECM4 ECM5

n Err(h) rate Err(h) rate

4 1.6894 · 10−7 – 3.9505 · 10−1 −−
5 3.6406 · 10−11 12.1801 5.1899 · 10−10 29.504

6 2.1538 · 10−14 10.7231 1.4633 · 10−13 11.792

To investigate the efficiency of the proposed scheme, the algorithm ECM5 is
compared with the existing stiff solvers - Radau and ode15s with respect to CPU
time. Similar above, we solve the problem on the time interval [0, 0.5] with the fixed
uniform step size h = 1/64 and the parameter κ = 20 and report it in Table 3. It
can be seen that ECM5 is superior to other existing methods in the sense of CPU
time.
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Table 3. CPU time comparison using ECM5, Radau and ode15s

ECM5 Radau ode15s

Err(h) cpu Err(h) cpu Err(h) cpu

2.5346 · 10−13 0.0176 4.2133 · 10−13 0.0689 6.0485 · 10−13 0.3678

4.2. Oregonator Model

In the next example, we consider the oregonator model [1] which originates from
chemical reactions. It is formulated for the most important parts of the kinetic
mechanism that gives rise to oscillation in the chemical reaction. The model is
represented by a stiff ODE system consisting of 3 equations given by

dφ

dt
= f(φ), φ(0) = φ0, φ ∈ R3. (4.3)

The function f is defined by

f(φ) =


s(φ2 − φ1φ2 + φ1 − qφ2

1)

1
s (−φ2 − φ1φ2 + φ3)

w(φ1 − φ3)

 . (4.4)

The problem is solved with the parameters s = 77.27, w = 0.161 and q =
8.375 × 10−6 and the initial values (1, 2, 3)T . Since the analytic solution does not
exist, we take the numerical reference values obtained by ECM5 with fixed step
size h = 2−7 as the analytic solution. The numerical results with different step
size h = [1/12, 1/24, 1/36] are reported in Table 4. The result show the numerical
evidences for the theoretical convergence order.

Table 4. Numerical comparison of ECM4 and ECM5

ECM4 ECM5

h Err(h) rate Err(h) rate

1/12 3.8609 · 10−4 – 4.5158 · 10−4 −−
1/24 3.2061 · 10−7 10.2339 8.4498 · 10−8 12.3838

1/36 4.7661 · 10−9 10.38 6.4875 · 10−10 12.0095

To examine the efficiency of the proposed scheme, we compare the error as
a function of CPU time for ECM scheme using the traditional platform and the
proposed platform based on the 4th degree polynomial with Radau5 scheme. Note
that we use a vector calculation for parallel computation to get function values
in each level, so the CPU time is more suitable for comparison than the number
of function calls. The CPU time is taken an average value after executing 100
times to minimize random computer execution factors in the operating system.
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Figure 2. Comparison of error as a function of CPU time for traditional method and proposed scheme

For comparison, we march from t = 0 to tF = 6 with different time step sizes
h = 1/12, 1/24 and 1/36. Fig. 2 shows that regardless of the local platform order,
ECM methods are superior to the Radau5 scheme, as shown in Table. 3. Also, it
can be seen that the method based on the proposed local platform needs less CPU
time and time differences between these schemes are bigger as the number of time
intervals is increasing, compared to ECM based on the traditional local platform.

5. Conclusion and further discussion

In this paper, we develop a new methodology for construction of local platforms
based on the explicit one-step error correction method (ECM) for solving initial
value problems. By adding more step function values on the traditional scheme
to construct the fourth and fifth local platforms, we can prevent the excess of the
number of unknowns and reduce the system size to solve at each level. Numerical
simulations show that the proposed scheme is promising and competitive.

Currently, we are generalizing the proposed idea to construction of local plat-
forms having arbitrary order, so that ECMs can have excellent super convergence
order. Also, besides polynomial-based local platforms, we are investigating other
types of local platforms, such as exponential functions [8]. Progress will be reported
soon.
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