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NEW CONSTRUCTION OF HIGHER-ORDER
LOCAL CONTINUOUS PLATFORMS FOR
ERROR CORRECTION METHODS*

Sunyoung Bu

Abstract Error correction method (ECM) [6,7] which has been recently de-
veloped, is based on the construction of a local approximation to the solution
on each time step, and has the excellent convergence order O(h2p+2), provid-
ed the local approximation has a local residual error O(h?). In this paper,
we construct a higher-order continuous local platform to develop higher-order
semi-explicit one-step ECM for solving initial value time dependent differential
equations. It is shown that special choices of parameters for the local platform
can lead to the improvement of the well-known explicit fourth and fifth order
Runge-Kutta methods. Numerical experiments demonstrate the theoretical
results.
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1. Introduction

We discuss the numerical solution of the initial value problem (IVP) given by

d¢ _

L= (40, teltots),  ulte) = do. (11)

Many numerical techniques [2,3,10] have been developed for the accurate and effi-
cient solution of the IVPs, including linear multi-step methods, Runge-Kutta meth-
ods and operating splitting techniques, etc. In this paper, we focus on the per-
formance of the error correction method (ECM), recently developed by P. Kim et
al. [6,7,9]. The basic idea of ECM is on the solution of the perturbed problem for a
given local approximation to the true solution on each time step. Note that the p-
stage implicit Runge-Kutta (RK) method achieves the order of accuracy 2p [5] and
it needs to solve a simultaneous system of equations at each time step by a costly
Newton-type iteration. Unlike the traditional RK methods, ECM has the excellent
convergence O(h?P*2) if one can make a local approximation y(¢) to the true solu-
tion on each time step such that the local residual error f(¢,, ¢(t,)) — @' (t,,) has the
asymptotic behavior O(hP), where p is any positive integer. In this paper, we focus
on the construction of higher order continuous local polynomial approximations on
each time step to build up much higher order ECM.
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Usually, to construct a continuous one-step method [4], one can extend an ex-
isting discrete method by including some additional function evaluations.

i—1
Ki:f(t0+cih7¢0+hzaij](j>7 i=1,--,v, (1.2)
j=1
G(to + 0h) = ¢o + h Y _bi(0)K;;, 0 € 0,1], (1.3)
=1

where ¢(tg + 6h) is a continuous approximation to ¢(t) in [to,to + h] and b;(6),
i=1,---,v are polynomials of degree < d, where d is a positive integer. Up to the
4th degree local approximations, the number of unknowns to calculate ¢(t) at each
level is the same as the system size induced by (1.2). However, when the degree is
bigger than 4, the number of unknowns at some levels exceeds the given information
derived from (1.2). That is, it is difficult to construct the local approximations over
the Hth degree.
In the proposed scheme, we add the following function evaluations

i—1
Ki(=h)=f tO_cih7¢O_hZainj , i=1--, v, (1.4)
i=1

on the traditional scheme (1.2). By combining the additional function evaluations
(1.4) with (1.2), the number of unknowns can be sufficiently minimized at each
level. Moreover, the system size at each level is automatically reduced, so that
the proposed scheme can minimize the overall computational costs. That is, the
proposed scheme can be more efficient than the traditional way in the sense of
computational costs. Also, it can stably control the number of unknowns within
the given information derived from (1.4).

The aim of this paper is to construct quartic and quintic local polynomial plat-
forms to the solution on each time step, which generalize the classical fourth and
fifth order RK methods. The regime of the implicit RK methods is the basic tool to
construct the local approximation. We show that each local polynomial has several
free parameters, and the special choices of the parameters lead to the fourth and
fifth order explicit RK methods. That is, the corresponding ECMs which are spec-
ified by the parameters based on the fourth and fifth degree local platform, have
the orders of accuracy up to 10 and 12 having almost L-stability [11], respectively.

This paper is organized as follows. In Sec. 2, we briefly describe the explicit
one-step ECM. In Sec. 3, we construct quartic and quintic local approximations
generalizing most classical RK methods. Preliminary numerical results are pre-
sented in Sec. 4 to give numerical evidences for the theoretical analysis. Finally
in Sec. 5, we summarize our results and discuss some possibilities to improve the
efficiency of the new scheme.

2. Error Correction Methods (ECM)

In this section, we briefly review the ECM algorithm. Let y,, be an approximation
to the true solution ¢(¢) at time t,, by a numerical method. Let y(¢) be a local
approximation for the true solution ¢(t) on the local time step [t,, tm+1] satisfying

Y(tm) = Ym, (2.1)
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and
F(t) = f(t,y(t)) —y'(t) = O(MP), t € (tm,tmt1l, (2.2)
for some positive number p. By using the Taylor’s expansion,

Flt, o) = f(ty(®) + folt.y(£)(6(t) —y(t) + O((6(t) — y(1))?), (2.3)

where the generic constant is depending only on the bound fy4, one may have the
following asymptotic linear ODE

W' (t) = e(t)p(t) + F(t) + OW(6)*),  t € (tm, tm), (2.4)
where 9 (t) is a perturbation of ¢(t) on [t,,, t;m+1] defined by
P(t) == ¢(t) —y(t), t € [tm, ] (2.5)

and ¢(t) is defined by
o(t) = fo(t,y(t))- (2.6)

Now, by applying the Chebyshev collocation method (CCM) to (2.4) and using
the relation in (2.5), one can have a discrete system as follows:

h h
where by, := [[2(s7),- - ,12(s™)], the matrices £,, A, and J,, are defined by

whose entries are defined by

Lje = I13(s?), ik = 0(t(s7)0jk, e = Ljx(sT) — 5 Jiks (2.9)
and n x 1 vectors @, y,, fn and 7, are defined by

@, = [B(t(s1)), - s oINSy = [y(E(sT)), -+ syt (sp))T

fn = [F(t(s?))v 7F(t(32))]T7 'n = [7’1,~-- ﬂcn]T7 (2'10)
where r; consist of the asymptotic term in (2.4) and the interpolation errors. Here,
17 (s) is the interpolation polynomial of degree n induced by Chebyshev polynomials,

t = t(s) is the change of variables transforming the computational region [t,,, tmt1]
to the reference domain [—1, 1] such that

t:t(s):tm+g(1+s), se[-1,1], (2.11)

and s7 are the Chebyshev-Gauss-Lobatto (CGL) points such that

s;:cosw, 7j=0,1,--- n.

Solving the discrete system (2.7) gives

o(t(sy)) = y(t(sy)) + pi* = (O(tm) —ym)1i" +wi', k=1---,n,  (212)
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where pi", v and w;* are the k" components of the solutions for the linear systems
h
A,z = §fm Apx =0b,, and A,z =r,, (2.13)

respectively, k = 1,--- ,n. Hence, by using the fact ¢(s}}) = ¢;,+1 and truncating
the last two unknown terms in the right hand side of (2.12), the ECM is defined as
follows:

Ymt1 = Y(tms1) +un', m>0;  yo = ¢o. (2.14)

For more details on ECM, we refer to [6,7].

3. Construction of the higher order local continuous
platform

In this section, we construct the local continuous approximation based on polyno-
mials up to degree 5 which serves as a basis of the ECM. Prior to the construction,
it is convenient to introduce and simplify notations to handle derivatives. We de-
note f =1 and f! = f(t, ¢) which are derivatives of ¢t and ¢(t) with respect to ¢,
respectively. Also, we write the second derivative of ¢ with respect to t as

oft dt 8f1 dgb
"o__ 1y Y 2 10 1rl
If we write zg for % and z; for g—;, then we get
1 . .
o =[O R =Y S =0 (3.2)

i=1

where the last equality means the Einstein summation symbol, which says that any
repeated subscript or superscript in a multiplication term is to be summed over
its range (0 to 1). Interested readers are referred to [4] for further details on the
Einstein summation symbol.

Based on these notations, we will consider Taylor’s expansion of ¢(t) at time
t = t,, as follows:

(—) (t - )

O1) =6(tm) + (¢ = t) f + 5" F} 7 + (£ 75+ 11 1L1%)
_t )4 A ' _ _
e RSN T f}fiszfl + SR
_ 5 ‘
+%( ]klmfjfkf fm+f fklmfkf fm+6fklfjfkffnfm
AL L S £ T RS £ T TP S T £ 4 BT L S
+fj1fIZflkf7lnfm) +O(h6)7 (3.3)

where coefficients are evaluated at t = t,,,. Also, the Taylor’s expansion of f(t +
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a,y + () at the point (¢,y) is given by
Pt oy +B) =F" +afy + B + 5 (o2 o + 20855 + B7h)
+ é (o fooo + 302 B foo1 + 3B for1 + B fii1)
+ s (@ foooo + 40 Bfgoor + 6025 foor1 + 4B’ fr11

24
+/84f11111) +eee (3.4)

3.1. Local polynomial approximation of degree p=4

In this subsection, we give the technique to construct a local polynomial approxi-
mation of degree 4 for which the seven unknown coefficients fj1 7, jlk VEB AR fj1 fire,

L fT LR LA R f and f1FLFEF in (3.3) must be determined. We
begin with the determination of three unknowns fj1 fj,fjlkfj f* and fjlklfj fEfL

3.1.1. 1st level

For this, we consider
Kl,i = f(tm + al,ihaym + al,ihf(tmvym))a 1= Oa ]-7 27 (35)

where «; ; are arbitrary parameters to be determined. Applying the Taylor’s ex-

pansion (3.4) to (3.5) leads to the following three equations for fjlfj7 jl,ﬁfjf’C and

fjlklfjfkfl'

oziih2

2

. . ol b3 .
Kl,i:fl'i‘al,ihfjlfj'i_ jlkfjfk—’_l’T ]'1klf]fkfl+0(h4)ﬂ i=0,1,2.

(3.6)
Hence, by solving these simultaneous equations, a 3 by 3 system is needed to solve for
fir, jlkfjfk and fjlklfjfkfl. Notice that to generally construct a local polynomial
approximation of degree p, we need to solve a p by p matrix. However, it is more
expensive and complicated to solve when p becomes large. In this paper, unlike the
traditional way to solve the 3 by 3 system, we introduce a new notation K ; to
reduce the system size to a 2 by 2 system using K5 ;(h) and K; ;(—h) as follows:

Ky, =K ;(h) — Kyi(—h), i=0,1, (3.7)
where K7 ;(h) = K7, and
Ky i(=h) = f(tm — 0a1,ih, Yym — a1,ihf(tm, Ym))

. [0 zh 2 . [0 zh 3 :
= P (g} o O e O g ognt),
(3.8)
Then,
3
Ky =2(a1:h) f} f7 + h“%fjlklfjf’“fl +O(hY). (3.9)
If we define v, and 3 as follows:
}_?'\
T a2 (3.10)

3 Ky,
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2a1,0h al’gh . P .
where A = o3 pe | then fjlfj and fjlklfjfkfl can be obtained
20&1)1h 1'§
[ Y1 4 O(h?)
) - 7 (3.11)
i e f v + O(h)

Note that for determination of the coefficients, the matrix A; should be non-singular
or det(A;) = §a170a171h4(a%’1 — oz%o) # 0, so a1,0 and a1 should satisfy the
following conditions:

al,i#oa i=0,1

(3.12)
a1 # £ agp.
Based on the calculation for (3.10), K;,; can be rewritten as
Ky = 1 a%,ihz 1 pjrk O‘%,ih?) 4
1i=f +toaiihn + 5 il 5+ — 3t O(h"). (3.13)
Since y; and 3 are now known values, fjlk f7 f* is simply determined by
[l 15 =72+ O(?)
a3 oh3 (3.14)
= (2K1,0 —2f' — 20y ghyy — 1,; ’73) /a3 oh* + O(h?),

provided a9 # 0.

3.1.2. 2nd level

NeX‘F7 for the determination of the unknown coefficients fjl f]g r*, jlk lJ FEf and
f}FL R FE we consider

Ko = f(tm + oih,Ym + hdai), G2 = Boif* + (a2 — Poi) K1 (3.15)

where o ; and (2 ; are parameters to be determined. Applying Taylor’s expansion
and K7 ; to Eq. (3.15) leads to the following equations

1 . 1
Koi= '+ (a2:h)y + 5(042,1‘}1)272 + Nial,ithjlfgfk + 6(a2,ih)373
. (3.16)

;”f}féfkfl+fh%uoq¢a2¢fﬁjﬂfffl+—0(h4x

+ B

where p; = ag; — B2, for ¢« = 0,1,2. Similarly above, instead of solving a 3 by 3
system, we introduce a new notation Kp; by defining Ky ; = Ko ;(h) — K2 ;(—h).
Then

KQ’Z' = DAZ + h3ﬂi(0[17i)2fj1flzlfkfl + QhSMiOll,iCVZ,ifjlkfjflkfl

3.17
O, i=0,1, (3.17)
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where D; = 2(ag;h)y1 + % (2,3h)%y3. By solving the system (3.17), one may deter-
mine f; fi, f* f* and fjlkfjflkfl with the formula

FLELFR T\ s+ Oh) (318)
fjlkfjflkfl v6 + O(h)
where
) =~ I?)\O - 1?0 , Bii= Hoad oh” Zptocrr 0020 ) (3.19)
Y6 Ko1 — Dy p1od 1 B? 2pan yag  h?

As mentioned above, for the determination of coefficients fj1 f,zl fF £t and }k I flk 1
the matrix B is non-singular. Since det(B1) = 2h®pouiaq oar1(an o0 1—ar 100,0) #
0, the conditions to be satisfied are as follows:

g 7& 0 i=0,1,
Q2 j # BQ,i 1= 07 1a (320)
o002, — oy 1020 7 0.

Based on the previous calculation, K5 ; can be simplified as follows:

1 .
Ky ;= H+ (a2 ih)m + *(OlQ,z‘h)2’Y2 + Mz‘a1,¢h2fj1f1sz

20 (3.21)
1 3 3. Y 3
+ g(amh) 73+ h Hi—5 s + hPpson 00 47,
Hence, f} fLf* is easily obtained by
FLAE =va+ 002
1 1 2 1 3
= (K2,0 — = (a20h)71 + 5(042,0@ Yo — g(%,oh) V3 (3.22)

. OZ2
+ h‘sﬂo%% + h3M0041,0042,0’76) /o oh* + O(h?),

with HoC1,0 7é 0.

3.1.3. 3rd level

Finally, for the determination of the remaining unknown coefficient fj1 f,g flk f"in the
expression (3.3), we consider

K3 = f(tm + agh, Ym + hPS) (323)

where
p3 = Baof' + B31K10+ (a3 — Bao — Bai) K20, (3.24)
where 83 ;,% = 0,1 and a3 are arbitrary parameters to be determined.

FHELEf =9+ O(h)

1 a?
:7}131/3 (K?, — f1 _ 'ylhag, — h2 (1/1’)/4 + 73’}/2) (325)

ad
—h? (Vﬂs + azvive + ﬁ%)) +O(h),
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where
V] = BS,I(al,O — aQ’O) + (CK3 - /83_’0)042703
3 a3
Vo 1= 27 (a3 - 63,0 - 63,1)7 (326>

vy := (a3 — P30 — B3,1) (2,0 — B2,0) 1,0

Finally, by substituting (3.10), (3.14), (3.19), (3.22) and (3.25) into (3.3) and
approximating @(t,,) with y,,, one may define the local approximation y(t) of degree
4 by

_ 2 _ 3
y(t) = Ym + (t - tm)f(tmaym) + (t th) et <t gm) (72 + 74) (3 27)
_ 4 ’
+ %(% +3’76+’75+’Y7),

where 7;, ¢ =1,---,7, are defined in (3.10), (3.14), (3.19), (3.22) and (3.25).

3.2. Local polynomial approximation of degree p=5

Similarly to the previous subsection, in this subsection, we construct a local poly-
nomial approximation of degree 5 by finding approximations for 15 unknown coef-
ficients in the equation (3.3), which are the total derivatives of ¢ with order larger
than 2.

3.2.1. 1st level
First, we start with finding the leading coefficients of each order term in (3.4), f; f7,
jlkfjfka gszjfkfl and Jklmfjfkflfm using
K1 = f(tm + o1,ih,ym + 01 ,ihf (b ym)), ©=0,1,2,3 (3.28)

where o ; are arbitrary parameters to be determined. The Taylor expansion can be
applied to Eq. (3.28), and then following equations for f 17, f; L fIfk, f; LIfRf
and Jklmfjf’“flfm can be obtained.

Kl,i :fl+(a1 zh)flf] (alz ) fkfjfk (alz ) fklfjfkfl
()t (3.29)
+ 22 ]klmfjf f fm+0(ho) i :0713253'

As mentioned above, instead of solving a 4 by 4 system, we introduce a new
notation K ; to reduce the system size using K ;(h) and K ;(—h),

Ky =Ky (h) — Kyi(—h), (3.30)
where K1 ;(h) = K1 ; and
Ki1,i(=h) == f(tm — a1,ih, ym — a1 ,ihf (tn, ym))
= = (o b+ P g g

(arh)*
24

(a“ N = R (3.31)

+

jklmf]fkf "+ O(h?).
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Then,
3
— ) oy, )
Ky =2a1:hf] 7 + hs%fg‘lklfjfkfl. (3.32)
Since
1f + O(h*
fjf _ T (h) , (3.33)
fjlklfjfkfl '}/3—1—0(112)
the coefficients can be determined by
E\
M =a ), (3.34)
3 Ky
2&1 Oh al oh . . .
where A; = o3 h3 . Note that for determination of the coefficients,
20[1 1h L 1

the matrix A; should be non—singular or det(A;) = §a1)0a171h4(a%1 - a%}o) # 0.
Therefore,a1 o and o1 should satisfy the following conditions:

al,i#ov 1:071

(3.35)
a1 # Fou .
Similarly above, we introduce a new notation IT(TZ as follows:
Ki; = K1,i(h) + Ki:(-h), (3.36)
then we get
— ai
Ki;=2f"+n* a“ jkfjfk+h4 Z jklmfjfkf . (3.37)
Since
ifk +O(h?
pefirs ) _ (o) 59
S PR Y1+ O(h)
the coefficients can be determined by solving these equations
Ko —2f"!
P a0 ™. (3.39)
V4 Kiq—2f*

4
2 9 o h
a1 h” =55

042 h2 aj oh
where Ay = ( 1.0 A2 and As should be non-singular. Since the det(As) =

1 aio) # 0, the condition to be satisfied for determination is the
herefore, the conditions for the parameters are

H

05177; 7é O, ’L = O7 1
oy, # foy .

(3.40)

and a2 and a3 become free parameters to be assigned arbitrarily without any
constraints, unlike the traditional way.
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Remark 3.1. Notice that the traditional scheme generates a 4 by 4 system to
solve (3.28), while the proposed scheme needs only two 2 by 2 systems ((3.34)
and (3.39)), so that it can reduce the total computational costs. This is one of
remarkable improvements of the proposed scheme.

3.2.2. 2nd level

Secondly, we consider

Ko = f(tm + 2ih,Ym + hda;), G2 = Boif* + (a2 — Poi) K1 (3.41)

where o ; and (s ; are parameters to be determined. Applying Taylor’s expansion
and K ; to Eq. (3.41) leads to the following equations
1

6(@2 ih)%s

FHEL R+ WP pia o fi O FE £+ (0<2zh)474

1 .
=(02,ih)*y2 + pion ith‘lfIka +

= f'+ (az,h )71+2

+ h (al Z)

2

i j m A1, j m
+h4uiif}f,zlmf’“flf + b=t o, }kfffl’;ﬂf
a2 2

R SR A A B R P £

+ O(h®) i=0,1,2,3,

(3.42)

where j1; = g ; — 32,;. Since there are 7 unknowns, we need a 7 by 7 matrix to solve
(3.41) in the traditional way. However, unnecessary values K ; in (3.41) should be
calculated to generate the relevant conditions, so it leads expensive computational
costs and unnecessary storage costs. To hurdle this drawback, similarly above, we
introduce a new notation K2 i by Kg i = Ko (g, B2, h)— Ka ;(ag,i, B2, —h), then

I?z\ﬂ' =D;+ hguioziif}f,zlfkfl + 2h3ﬂia1,ia2,if]'1kfjflkfla (3.43)

where D; = 2(ag,ih)y1 + %(agﬂ-h)?’vg. Therefore, by solving these equations (3.43),
one may determine fj1 [, 5 f1 and jlk fIfF f with the formula

[ 1\ _ (s +002) (3.44)
fjlkfjflkfl 76+O(h2)
where
I?\ - D o? b3 2upaq oo oh®
V5 :Bfl /2\,0 Ao By = Ho&71 o HoC1,002,0 . (3.45)
Yo Ko1—Dy /ila%_;hg 2uiaq 1ag 1h3

For the determination of coefficients fj1 f,zlfkfl and fjlkfj flkfl, the matrix B is non-
singular. Since det(B;) = 2h6,u0u10¢1,0a171(a17004271 — a1,1000) # 0, the condition
to be satisfied is as follows:

a1; #0, i=0,1,
gz # B2,  1=0,1, (3.46)

oq,002,1 — g 1000 7 0.
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Similarly, we again introduce another notation I?Q/l = Ky ;(ag, B2, h)
+ K3 ,i(—a2i, —B2,,h). Then, one may check that

Kai = D; + h*pion ) 2oz fl f7 HE FLE™ + B4 3ol £ f FLEE Fm, (3.47)

where E = 2f1+ (aa,ih)?v2 +2h3 i oz 6 + %(agﬂ-h)‘kw. Therefore, by solving

these equations (3.47) to determine fjlkfjfl’jnflfm and fjlkfl] FUfE f™ we can get

jlkfjfllinflfm [t O(h) (3.48)
jlk ljflf'rlfzfm V8 + O(h)
where
Ky 0 — Do o2y oh? p2a2 (bt
Y7 :B;l /2;0 No By = Moty gQ2,01" Qo . (3.49)
8 Ky — Dy Mlai10¢2,1h4 N%a%,1h4

To satisfy the non-singularity of Bs, the following conditions should be satisfied

0[1’0 7507 ’L':07].,
Q20 7& 62,07 1= 07 17 (350)
agop1 — poce1 # 0, o 1820 — B21a00 # 0.

Based on the calculation for I/(Q\Z and I?Zi, we lastly define Ko ; = K ;(az,i, 824, h)—
K5 ;(—as,i, —B2,;, —h). Then one may check that
T _ T 2 145 ¢k s J ek gl em
Ko = D;+2h"pian i f fio /™ + ?Nial,ifj Tam 1 f
+ b e jan i f i f PR LT
where D; = 2as,:hm1 + 5(az,:h)%ys + h*piad ;5. Therefore, by solving these e-

quations (3.51), one may determine fjlfgfk, fjlf,zlmfkflfm, and jl,clfjfkﬂnfm as
follows:

(3.51)

A Yo + O(h?) a0 = Do+ O(h?)
B 7 = [ mo+00) | = B3 | Koy =Di+0(h) | (352)
Pt f*ff™ 71+ 0(h) Kyz =Dy +O(h)
a 3
2p1001,0h% 0 5 oz 0) 2 oh*
where B3 = 2M1a1,1h2 H1 %WL Ml(a2,1)2a1,1h4 with the conditions

3
2ppc1 2h? o Tt a0z )2 oh*

a1.0 #Oa 1=0,1,2,
Q20 7é 52,07 1= 07 17 2a

2 9 2 2 2 2 2 2 2 2 2 92
Q71059 — QF 905 1 — Q (5 + OF g5 1 + Q5 007 5 — a5 gaq ; # 0.



454 S. Bu

Remark 3.2. Note that instead of solving a 7 by 7 system directly with generating
unnecessary function values done in traditional way, the proposed scheme can reduce
the system to a 3 by 3 and two 2 by 2 systems without any additional function values,
so that it can reduce the total computational costs and storage costs. This is the
other remarkable improvement of the proposed scheme.

3.2.3. 3rd level
We need to determine the remaining unknown coefficients by considering
Ksi= f(tm + a3 ih,ym + hps.i), (3.53)

where
p3i=Baift +ws iK1+ (a3 — B3 — wsi) Ko (3.54)

Here, a3 4, 33,; and ws ; are arbitrary parameters to be determined. Similarly above,
one may check that

o 2 a%_’i
Ks;=f +asihy+h — 2t (0 w3, + Tic2,i) Y9

as, 1 ,
+ h? (%73 + 5(04%,2*003,2‘ + Tiag,i)% + Tiﬂial,ifjlf]zflkfl

agyi + 1( 3 + 3 )
Y4 T 2\ ;W35 T Tl ;)7Y10
24 R ' (3.55)

2
al . . . .
o Fi St 7+ mipion o, ] fiu fR fr ™

+ ag (0 iws; + 7'1'042,1')’76) + h4(

+ Tils

1 1
+ 5(04%,1‘003,1‘ + 70 )z iyr + §(a1,iw3,i + Ti02,i) s
N

9 o W3 i + 7—1'042,1‘)’}/11)7

+ Tiﬂial,ia?),ifjlkfjflkfvlnfm +

where 7; = a3 ;— 33 ;—ws ; and p; = g ;—PB2;. Since f}f,glfkf}nfm = jlkfjflkffnfm,
there are 3 unknowns to be solved. Similarly above, we introduce a new notation
K3 = K3,i(h) — K3(—h), then

f?:;' =D+ QhBTiNial,if}f]Zflkfla (3.56)

Where ﬁ = Q(agﬂ-h)'yl+%(agyih)gfngrhS(aiiw&i+Tia§’i)'y5+2h3(a17iw37i+na27i)’yg.
Hence, f} f] fFf! can be obtained by

FLALEE S =2+ O(R?), (3.57)

where - R
vz = (K30 — D)/QTouoalyohg, provided Touar,0 # 0. (3.58)

Similarly, for I/gl = K3,(h) + K3,(—h), [/(3: can be rewritten as follows:

2
— — at, .
K3 ;= Ds3; +Tiui7ﬂf}f]gfl’;1flfm

+ mipian i(oo + oz ) Fn f I f™

(3.59)
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4
Q3

where Dy ; = 2f' + h? (ag,ﬂz + 2(a1,iws,i + Tiaz,i)vg) + h4( Sty + 3 (ad jws +

3 2 2 2 2
TiaZ,i)’YlO+(O‘17iw3,i+Tia27i)a3,i77+(al,iWB,i+Tia2,i) Y8 +0437i(Oél,iw?),i"f'TiOéz,i)’Yll) .
Since

FREE S [ ms+0(0h) (5.60)
P B fE g™ Y14+ O(h)
the coefficients can be determined by solving the following system
K3 — Ds
B I e (3.61)
Y14 K31 — D3

Topoat ogh* 27opo0n (2,0 + a3 0)h*
where C = ’

2 4 4
Tlulamh 27’1#10[171(0(2,1 + Olgvl)h

3.2.4. 4th level

Finally, for the determination of the remaining unknown coefficient fj1 f,i fl”C fLrm
in the expression, we consider

Ky = f(tm + aah,ym + ho), i=0,1,2, (3.62)
where

0= Baoft + Bu1K10+ BaaKoo+ (s — Bao — a1 — Baz) K30,

where oy and 34,; are arbitrary parameters to be determined. Similarly above, one
may check that

2 3
« a/
Ky = f' + ayhy + b2 <24’Yz + V179> + hd(f% + V25

2

4
Qy ay
Y4 + Vayio + Vsv13 + 71/1’)’11

o (3.63)
24

+ v3v12 + Oé4V1’Y6> + h4<

1 )
+ ooy + iuf’yg + Vry14 + QaV37y14 + VGfJ:'Lf]zflkfrlnfm)v

where

v1 = Byran,0 + Bapaso + Kasp,

va = (Ba103 o + Ba2as o + Kaj)/2,

v = Ba oo + K(Toe,0 + a1,0w30),

vy = (,34,104%,0 + 5472043,0 + “ag,o)/G,

vs = (Baapoad o + k(1005 0 + 0 gws0))/2,

Vg

KToHoC1,0,

v = Baafio 0020 + kas,o(Tooe,o + a10ws ), (3.64)
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with K = ag — Bao — Ba1 — Baz2. Since f1fLfEfL =15 + O(h),

M5 == h41 (K4 — f1 = ashy — hz( Yo + V179) - h3(0§7

+ voys + v3vi2 + a4V1’)’6) - n* ( o4 V4 + v4y10 + Vs V13 (3.65)

2

ay
+ 5 V1 + ayveyr +

4

1,
SVIs + (vr + a4l/3)’)’14)>-

By substituting into (3.3), and one may define the local approximation of degree 5

by
tm2 t tm3
: 2)71 : 6)

$(t) = d(tm) + (t = tm) f* +

(t —tm)* (t—tm)®
51 (v3 + 376 + 75 + Y12) + 50

+6711 + 4v7 + Y13 + Ty14 + 378 + 715) + O(h®),

where v;, ¢ =1,---,15, are defined in (3.34), (3.39), (3.45), (3.49), (3.52), (3.57),
(3.61) and (3.65).

(72 + 79)

(3.66)

+ (Y4 + 10

3.3. Analysis

We will show that a special choice of the parameters appeared in (3.27) gives the
classical fourth order RK method. We recall the fourth order RK method described
by

h
Ym+l = Ym + A (k'l + 2ko + 2k3 + k4)7

h h
k1 :f(tmaym>a k2:f(tm+§7ym+§k1),
h h

Lemma 3.1. For the local approzimation y(t) in (3.27), the value y(tmy1) is the
same with the approzimation Ym+1 n (3.67) provided we take

1 .
az =1, a10=0a20= ok B2 =p3:=0, =01, (3.68)

and the other parameters o; j and B; ; are arbitrary parameters so that the matrices
A; and B in (3.10) and (3.19) are nonsingular.

Proof. Using the coefficients defined in (3.68), we can easily check that
Kio=ksy, Kyo=ks, Kz=Fk4.

O

Remark 3.3. Compared the 4th order Runge-Kutta(RK) methods to our formula-
tion, the proposed scheme needs more function evaluations or more stages. However
unlike the traditional RK formulation which is calculated sequentially using all val-
ues in previous stages, our formulation can be calculated all function values in each
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stage simultaneously using vector calculations [12]. That is, using vector calcula-
tions, function values at each level count as only one function evaluation. Therefore,
the calculation time for both traditional RK scheme and our formulation are exactly
the same. From this point of view, one can say that each local approximation of
degree p requires p level values for the slope function f.

Remark 3.4. For a simple ODE equation
y' =Xy, y(0)=1, (3.69)
the fourth order local polynomial approximation is calculated as follows: Since

Ky i(h) = A1+ a1, Ah)ym,
Ki,i(=h) = A1 = a1,;Ah)ym, (3.70)

for any coefficients a; o and oy 1, the unknowns ;1,72 and s in (3.10) and (3.14)
are calculated by

Kq0(h) — K1,0(—h)

— Al
V3 Ki1(h) — Ki,1(—h)
(3.71)
_ 4 201 oA\ hym, _ A2y
20[171)\2hym O
and
af oh? 2 12
Y2 = (2K1’0 — 2f — 2a1’0h’yl - ’3 )/al,()h =0. (372)
For any coeflicients ap; and 3 ;,

Ky i(h) = Aym (1 + i Ah + (o — /62,i)a1,i)\2h2)a
K3 i(=h) = Aym (1 — g A+ (g, — 52,i)041,i)\2h2). (3.73)

Based on the proposed algorithm, 5 and g are calculated by

Kao(h) — Ky 9(—h) — D, 0
| B! 2,0(h) 2,0(=h) Ao _ , (3.74)

Y6 Ky 1(h) = Ko1(—h) — D 0

where By and D; are defined in (3.19) and 74 is
1 1 2 1 3
V4 :<K2,0 — = (a20h)n + 5(042,0h) Y2 — 6(042,0/1) 73

s 04 3 2 3

+h MOT’% +h ﬂooq,ooézo%) [to0r oh” = Xy, (3.75)

K3 =Aym (1 + asAh + B 101 0AZh?

+ (043 — 6370 — ﬁ371))\h(a270/\h + /.110051)0)\2]742)). (376)
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77 is obtained by

1 a3
V1 =33 (Ks — f—mhag —h* (V1’Y4 + 7372>

s , 2 (3.77)

- h? (V2’Y5 + azrve + %73)) = Ay

Summarizing all calculations above, the approximation can be written as follows:
t_tm 2 t_tm 3
9(0) = o+ () O) + E 2 (32 4 L=l )
(t— 1) (3.78)
+ ) + o).

This is the exactly the same as the Taylor expansion of exp(At) at t = ¢, of (3.69)
up to 4th degree.

4. Numerical Results

In this section, we show two numerical results for both non-stiff and stiff problem-
s. For the comparison of the numerical results, the maximum error Err(h) and
convergence rates are presented, which are defined by

log(Err(hy)/Err(hs))
f— . —_— . = 4.1
Err(h) fg%xn |6(t:) — Yilloo, rate log(h1 /ha) ) (4.1)
respectively, where || - || denotes the maximum norm and h;, i = 1,2 are given

two time step sizes. For the convenience, we denote the ECM algorithm based on
the p degree local approximation by ECMp.

4.1. A simple nonlinear problem

As the first example, we consider a nonlinear initial value problem

d¢ _ ko) (1 — o(t)) 5

i~ 20m-1 €0 e0)=75 (4.2)

whose solution is ¢(t) = § + /1 — = exp(—~t) with a parameter .

To investigate the convergence of ECM based on the proposed local platform-
s, the problem (4.2) is solved on the interval [0,2] with different step sizes h =
27" n =1,2,3,4 with the parameter x = 1 which is represented for non-stiffness.
As seen in Table 1, the numerical convergence order of ECM based on the fourth
and fifth degree local platforms are the theoretical orders 10 and 12 stated in Sec. 2,
respectively.

To examine the effectiveness of the proposed algorithm, we compare it with
the traditional algorithm based on the 4th degree polynomial for the same setting
described above. Fig. 1 shows that the convergence behaviors of both algorithms
are quite similar and the convergence orders are about 10. It can be also seen that
the accuracy of the proposed scheme is lower than that of the traditional scheme
at the lower accuracy, but the difference is getting smaller and even the accuracy
of the proposed scheme is better at the higher accuracy requirement.
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Table 1. Numerical comparison of ECM4 and ECMS5 for non-stiffness (k = 1)

| ECM4 | ECM5
n | Err(h) rate | Err(h) rate
1] 5.0417-1076 - | 2.8407-107* ——
2 | 9.8011-1071 12.3287 | 1.6905-107%  14.0365
3 ]4.9449-107"  10.9528 | 7.2580 1072  11.1856
4 ]22204-1076  11.1209 | 1.5543-10"'° 12.1891

- % —traditional
-6 O proposed ©
10 "
*

0.07 0.00.1 0.2 0.3 0.5
stepsize

Figure 1. Comparison of convergence for traditional method and proposed scheme

Additionally, to examine the behavior of ECM for stiffness, the problem (4.2)
is solved on the interval [0, 0.5] with the parameter £ = 20, which gives a mild
stiffness. The numerical results with different step size, h = 27", n = 4,5,6, are
reported in Table 2. Table 1 shows that the numerical evidence can support the
theoretical convergence analyzed in Sec. 2.

Table 2. Numerical comparison of ECM4 and ECMS5 for stiffness (k = 20)

ECM4 ECM5
Err(h) rate Err(h) rate
1.6894 - 1077 - 3.9505-107"  ——

5.1899 - 10719 29.504
1.4633-10~ 13  11.792

3.6406 - 10~11  12.1801
2.1538 -10~1*  10.7231

To investigate the efficiency of the proposed scheme, the algorithm ECMS5 is
compared with the existing stiff solvers - Radau and odel5s with respect to CPU
time. Similar above, we solve the problem on the time interval [0, 0.5] with the fixed
uniform step size h = 1/64 and the parameter £ = 20 and report it in Table 3. It
can be seen that ECMS5 is superior to other existing methods in the sense of CPU
time.



460 S. Bu

Table 3. CPU time comparison using ECM5, Radau and odel5s

ECM5 ‘ Radau ‘ odelbs
Err(h) cpu | Err(h) cpu | Err(h) cpu
2.5346- 10713 0.0176 | 4.2133-107'%  0.0689 | 6.0485-107'% 0.3678

4.2. Oregonator Model

In the next example, we consider the oregonator model [1] which originates from
chemical reactions. It is formulated for the most important parts of the kinetic
mechanism that gives rise to oscillation in the chemical reaction. The model is
represented by a stiff ODE system consisting of 3 equations given by

g _
dt
The function f is defined by

f(@), #(0)=¢o, ¢€R. (4.3)

s(¢2 — P12 + 1 — qo})
f(¢) = L(—¢2— 12+ ¢3) |- (4.4)
w(p1 — ¢3)

The problem is solved with the parameters s = 77.27, w = 0.161 and ¢ =
8.375 x 107 and the initial values (1,2,3)7. Since the analytic solution does not
exist, we take the numerical reference values obtained by ECM5 with fixed step
size h = 277 as the analytic solution. The numerical results with different step
size h = [1/12,1/24,1/36] are reported in Table 4. The result show the numerical
evidences for the theoretical convergence order.

Table 4. Numerical comparison of ECM4 and ECM5

8.4498 -10~%  12.3838
6.4875- 10719 12.0095

1/24 | 3.2061-1077  10.2339
1/36 | 4.7661-1079  10.38

| ECM4 | ECM5
h | Err(h) rate | Err(h) rate
1/12 | 3.8609 - 10~* - | 45158-100*  ——
|
|

To examine the efficiency of the proposed scheme, we compare the error as
a function of CPU time for ECM scheme using the traditional platform and the
proposed platform based on the 4th degree polynomial with Radau5 scheme. Note
that we use a vector calculation for parallel computation to get function values
in each level, so the CPU time is more suitable for comparison than the number
of function calls. The CPU time is taken an average value after executing 100
times to minimize random computer execution factors in the operating system.
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Figure 2. Comparison of error as a function of CPU time for traditional method and proposed scheme

For comparison, we march from ¢ = 0 to tp = 6 with different time step sizes
h =1/12,1/24 and 1/36. Fig. 2 shows that regardless of the local platform order,
ECM methods are superior to the Radaub scheme, as shown in Table. 3. Also, it
can be seen that the method based on the proposed local platform needs less CPU
time and time differences between these schemes are bigger as the number of time
intervals is increasing, compared to ECM based on the traditional local platform.

5. Conclusion and further discussion

In this paper, we develop a new methodology for construction of local platforms
based on the explicit one-step error correction method (ECM) for solving initial
value problems. By adding more step function values on the traditional scheme
to construct the fourth and fifth local platforms, we can prevent the excess of the
number of unknowns and reduce the system size to solve at each level. Numerical
simulations show that the proposed scheme is promising and competitive.
Currently, we are generalizing the proposed idea to construction of local plat-
forms having arbitrary order, so that ECMs can have excellent super convergence
order. Also, besides polynomial-based local platforms, we are investigating other

types of local platforms, such as exponential functions [8]. Progress will be reported
soon.
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