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GLOBAL DYNAMICAL ANALYSIS OF A
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Abstract In this paper, a heroin epidemic model on complex networks is
proposed. By the next generation matrix, the basic reproduction number R0 is
obtained. If R0 < 1, then the drug-free equilibrium is globally asymptotically
stable. If R0 > 1, there is an unique endemic equilibrium and it is also globally
asymptotically stable. Our results show that if the degree of the network is
large enough, the drug transmission always spreads. Sensitivity analysis of
the basic reproduction number with the various parameters in the model are
carried out to verify the important effects for control the drug transmission.
Some simulations illustrate our theoretical results.
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1. Introduction

It has been reported that whether injected, snorted or smoked, heroin will begin to
affect the body’s central nervous system almost immediately after it is used since it
is more soluble in the fat cells [9]. Heroin users are more prone to catch the human
immunodeficiency virus (HIV) and the other blood-borne viruses diseases. One of
the dangerous effects for heroin use is the highly addictive nature of the drug [16].
All heroin users, even those who only snort or smoke the drug, can become addicted
with repeated use [1]. Heroin epidemics, as well as communicable diseases, are
characterized by three main factors: a state of susceptibility in the given region,
introduction of a provocative stimulus, and some degree of sensory contact between
those primarily and those secondarily affected. Compartment modeling is one of
the main method for studying the epidemiology. It is an interesting project to use
the similar method to investigate the dynamics of heroin epidemic transmission.

Some very interesting models [4,7,8,15,24] have been recently proposed. White
and Comiskey [24] propose an ODE model for studying the opiate addiction, based
on the principles of mathematical epidemiology. Mulone and Straughan [8] restud-
ied the model presented by White and Comiskey, and investigate the global stability
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of the equilibrium using the Poincaré-Bendixson theory. Liu and Zhang [7] inves-
tigated a heroin epidemic model with distributed time delays, they obtained the
transmission threshold R0 which determines the extinct and persistence of a heroin
spread. Huang and Liu [4] got the the global stability of the model proposed in [7]
by employing the suitable Lyapunov function. Wang et al [18] considered the mass
action incidence rate and proved that the drug use-free equilibrium and the unique
endemic equilibrium are globally asymptotically stable under some conditions by
using the second compound matrix. Fang et al [2] used a DDE model with two
distribute delays to study the global stability of a heroin epidemic model. Saman-
ta [13] built a nonautonomous heroin epidemic model with distributed time delay
and discuss the global stability of the model with the method of Lyapunov func-
tional. For the ODE model, they generally assume that the individuals are uniform
mixtures with homogenous contacts. These assumptions are not suitable for the
large scale social network with obvious heterogeneities.

Recently complex network is a useful tool to describe the behaviors of the trans-
mission disease. A new kind of complex networks: scale-free networks (BA) was
introduce by Barabási in 1999. He assumed that the distribution probability of any
node with degree k linking to other nodes is according to a power law p(k) ∼ k−γ .
Many realistic systems have been verified to belongs to a BA complex network.
Many communities diseases also exhibit characteristics consistent with a BA scale
free complex network. The spread mechanism of disease on network have been re-
ported and investigated in some papers and some text books by many authors. Some
classical SIS and SIR models [3, 10–12, 19–23, 25, 26] have been widely investigated
on large scale free networks. Wang and Dai [19, 20] gave the strict mathemati-
cal proof for the Pastor and Vespignani [10, 11] established SIS epidemic model in
heterogeneous network. Wang and Jin [23] proposed an SIS epidemic model on
scale-free network with multiple transmission routes to study the global dynamics
of the equilibria. Zhang et al [25] also built an SIS epidemic model to describe the
sexual transmission disease, they also got the global dynamics of the system using
matrix theory and dynamics of the differential equation. Many other works about
global analysis of the epidemic model on network are referenced in [3, 21,22,26].

Our model is aim to study the heroin transmission on a BA scale free complex
network. This paper is organized as follows: Sec.2 introduces a a modified heroin
model on complex networks. In Sec.3, the threshold and global stability of the
drug-free equilibrium are studied. In Sec.4, we obtain the existence and global
stability of the endemic equilibrium. In Sec.5, we give sensitive analysis of the basic
reproduction number with the model parameters to compare the importance for
control the drug transmission. Some simulations illustrate the theoretical results.

2. The model formulation
The nodes of the network links the possible individuals. The nodes have three
different states, one is susceptible, and the drug-taking and the drug detoxification,
denoted by Sk(t), U1k(t) and U2k(t), respectively. The three states are described by
”SU1U2U1S” model. A drug-taking individual links with a susceptible individual
and then may make the susceptible individual become a new drug-taking. The drug-
taking and the drug detoxification return to an susceptible individual since he(she)
is treated or educated. The drug detoxification individual is prone to repeat use
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drug. This model is describe as follows.

dSk
dt

= −kσSkΘ(U1k) + γ1U1k + γ2U2k,

dU1k

dt
= kσSkΘ(U1k)− (γ1 + δ1)U1k + δ2U2k,

dU2k

dt
= δ1U1k − (δ2 + γ2)U2k,

(2.1)

here σ is the infection transmission rate which each susceptible individual acquires
the infection from an infected neighbor during one time step. δ1 is abandon rate at
which a drug-taking individual transfer to a drug detoxification individual, so that
1/δ1 is the average abandon drug habit period. γ1 is the cure rate at which the
drug-taking can be cured. γ2 is the cure rate at which the drug detoxification can
be cured. δ2 is repeated rate at which a drug detoxification individual repeats use

drug. Θ(U1k) =

n∑
k=1

p(k′|k)U1k′

n∑
k=1

kNk

, which denotes the expectation that any given edge

points to an individual infected by drug-taking at time t. Nk = Sk + U1k + U2k

is the total number of individuals with degree k on the network. Assume that the
complex network is an uncorrelated networks, thus the initial node is independent

with the conditional probability, i.e p(k′|k) = k′p(k′)/ 〈k〉 , 〈k〉 =
n∑
k=1

kp(k). Thus,

Θ(U1k) = 〈k〉−1

n∑
k=1

kp(k)U1k(t)

n∑
k=1

kNk

.

According to (2.1), the total population with degree k is a constant. Dividing
system (2.1) by Nk, and denoting sk = Sk

Nk
, u1k = Usk

Nk
, u2k = U2k

Nk
, we have

dsk
dt

= −kσskΘ(u1k) + γ1u1k + γ2u2k,

du1k

dt
= kσskΘ(u1k)− (γ1 + δ1)u1k + δ2u2k,

du2k

dt
= δ1u1k − (δ2 + γ2)u2k,

(2.2)

where Θ(u1k) =

n∑
k=1

kp(k)u1k

〈k〉 . Since sk + u1k + u2k = 1, then (2.2) can be changed
into 

du1k

dt
= (1− u1k − u2k)kσΘ(u1k)− (γ1 + δ1)u1k + δ2u2k,

du2k

dt
= δ1u1k − (δ2 + γ2)u2k,

(2.3)

with the initial condition

u1k(0) = u1k0 ≥ 0, u2k(0) = u2k0 ≥ 0.

Due to [14], (2.3) is well-posed.
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Theorem 2.1. The solution of (2.3) is nonnegative and bounded, i.e 0 ≤ sk ≤
1, 0 ≤ u1k ≤ 1, 0 ≤ u2k ≤ 1. If Θ(0) > 0, then 0 < sk < 1, 0 < u1k < 1, 0 < u2k < 1
for all t > 0.

Proof. First, we prove Θ(t) > 0 for all t > 0 if Θ(0) > 0. From the second
equation of (2.3), one can obtain

dΘ

dt
= 〈k〉−1

σΘ

n∑
k=1

k2p(k)sk − (γ1 + δ1)Θ + δ2 〈k〉−1
n∑
k=1

kp(k)u2k

≥[〈k〉−1
σ

n∑
k=1

k2p(k)sk − (γ1 + δ1)]Θ.

(2.4)

Solving (2.4), we have Θ(t) ≥ Θ(0)e
[〈k〉−1σ

n∑
k=1

k2p(k)sk−(γ1+δ1)]dt
> 0 if Θ(0) > 0.

Next, we will show there exist a τ such that for all 0 < t ≤ τ , 0 < sk < 1. Note
that sk(0) ≥ 0, there exist a τ such that sk(t) > 0 for all t ∈ (0, τ). Now we prove
τ = +∞. If it is not true, then there exists a t0 > τ , such that sk(t0) = 0. From
the second equation of (2.1),

u′1k(t) = kσsk(t)Θ(u1k(t))− (γ1 + δ1)u1k(t) + δ2u2k(t)

≥ −(γ1 + δ1)u1k(t),

then u1k(t) ≥ u1k(0)e(γ1+δ1)t ≥ 0. Similarly, u2k(t) ≥ 0 for t ∈ (0, t0). Again using
the first equation of (2.1), one obtains

s′k(t0) = γ1u1k(t0) + γ2u2k(t0) ≥ 0.

From the definition of t0, s′k(t0) ≤ 0. If s′k(t0) < 0, then this directly leads to a
contradiction. If s′k(t0) = 0, then γ1u1k(t0)+γ2u2k(t0) = 0. From the nonnegativity
of u1k and u2k this implies u1k(t0) = 0 and u1k(t0) = 0, this also leads to a
contradiction with sk(t0)+u1k(t0)+u2k(t0) = 1. Hence for all t > 0, then sk(t) > 0.
From the second equation of (2.1), we have u1k > 0. Finally from the third equation
of (2.1), we get u2k(t) > 0 for all t > 0.

Summing up all the equation of (2.1), we have n′k = 0, that is nk = sk + u1k +
u2k = 1. Combining the positivity of sk, u1k and u1k, we have sk < 1, u1k <
1, u2k < 1 for all t > 0.

For the convenience, we denote

Ω = {(s1, s2, · · · , sn, u11, u12, · · · , u1n, u21, u22, · · · , u2n)|,

0 ≤ sk, u1k, u2k ≤ 1,
n∑
k=1

(sk + u1k + u2k) = 1},
◦
Ω = {(s1, s2, · · · , sn, u11, u12, · · · , u1n, u21, u22, · · · , u2n)|

n∑
k=1

kp(k)u1k > 0},

∂Ω = Ω/
◦
Ω.

From Theorem 2.1, Ω,
◦
Ω and ∂Ω are the positive invariant omega sets of (2.1).
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3. Threshold and global stability of the drug free
equilibrium

In this section, the basic reproduction number R0 is obtained by the next-generation
matrix. Using the method introduced by Van den Driessche and Watmough [17],
let F and V be the 2n× 2n matrix defined by

F = [
∂F
∂xi

]2n×2n, V = [
∂V
∂xi

]2n×2n,

where x = (u11, u12, · · · , u1n, u21, u22, · · · , u2n). Then F is non-negative and V is a
non-singular M-matrix. Hence the reproduction number R0 = ρ(FV −1), where

F =

A11 A12

A21 A22

 , V =

B11 B12

B21 B22

 , (3.1)

here

A12 =


σ p(1)
〈k〉 σ 2p(2)

〈k〉 · · · σ
np(n)
〈k〉

2σ p(1)
〈k〉 2σ 2p(2)

〈k〉 · · · 2σ np(n)
〈k〉

· · · · · ·

nσ p(1)
〈k〉 nσ

2p(2)
〈k〉 · · · nσ

np(n)
〈k〉


and

B11 = (γ1 + δ1)diag(1, 1, · · · , 1), B21 = B43 = −δ2diag(1, 1, · · · , 1),

B22 = −δ1diag(1, 1, · · · , 1), B33 = (δ2 + γ2)diag(1, 1, · · · , 1).

Other matrixes which are not special listed are zero matrixes with according di-
mensions. Denote the basic reproduction number is

R0 =

〈
k2
〉

〈k〉
σ(δ2 + γ2)

(δ2 + γ2)(δ1 + γ1)− δ2δ1
.

Then it is easy to compute that R0 = ρ(FV −1), ρ is the radius spectrum of FV −1.
Due to [17], one gets the following theorem.

Theorem 3.1. If R0 < 1, then the drug-free equilibrium E0 of (2.3) is locally
asymptotically stable.

Theorem 3.2. When R0 < 1, the drug-free equilibrium E0 is globally asymptoti-
cally stable.

Proof. Note that sk ≤ 1, it follows from (2.3), one can obtain
du1k

dt
≤ kσΘ(u1k)− (γ1 + δ1)u1k + δ2u2k,

du2k

dt
= δ1u1k − (δ2 + γ2)u2k.

(3.2)
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Consider the following auxiliary system
du1k

dt
= kσΘ(u1k)− (γ1 + δ1)u1k + δ2u2k,

du2k

dt
= δ1u1k − (δ2 + γ2)u2k,

(3.3)

(3.3) can be written as
dx

dt
= (F − V )x, (3.4)

where F and V are defined as (3.1), x = (u1k(t), u2k(t))T . It follows from [14]
lim
t→∞

x(t) = 0 when R0 < 1. Because of the comparison principle, thus

lim
t→∞

u1k(t) = lim
t→∞

u2k(t) = 0.

Hence, the drug free equilibrium E0 is globally asymptotically stable.

Remark 3.1. From the expression of R0, then

lim
k→∞

R0 = lim
k→∞

〈
k2
〉

〈k〉
σ(δ2 + γ2)

(δ2 + γ2)(δ1 + γ1)− δ2δ1
= +∞.

Hence, if the network is large enough, the basic reproduce number R0 >> 1, the
drug transmission always spreads in some region.

4. Existence and stability of the endemic equilibri-
um

In this section we discuss the existence and the stability of the endemic equilibrium
E∗. To get the endemic equilibrium E∗ = (u∗1k, u

∗
2k), then u∗1k, u

∗
2k satisfy

0 = kσ(1− u∗1k − u∗2k)Θ∗ − (γ1 + δ1)u∗1k + δ2u
∗
2k,

0 = δ1u
∗
1k − (δ2 + γ2)u∗2k,

(4.1)

where Θ∗ =

n∑
k=1

kp(k)u∗1k

〈k〉 . From the second equation of (4.1), then u∗2k = δ1
δ2+γ2

u∗1k.

Substitute it into the first equation, it leads to

u∗1k =
kσΘ∗

kσ(1 + δ1
δ2+γ2

)Θ∗ + δ1 + γ1 − δ1δ2
δ2+γ2

. (4.2)

Multiplying kp(k)
〈k〉 on both side of (4.2) and summing up, one obtains

Θ∗ =
1

〈k〉

n∑
k=1

k2σΘ∗

kσ(1 + δ1
δ2+γ2

)Θ∗ + γ1 + δ1 − δ1δ2
δ2+γ2

, f(Θ(u∗1k). (4.3)

(4.3) is a consistency equation. A non-zero stationary prevalence can be obtained
when the right-hand side and the left-hand side of (4.3), expressed as functions of
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Θ(u∗1k), cross in the interval 0 < Θ(u∗1k) ≤ 1, allowing a nontrivial solution. It is
easy to know that

df(Θ(u∗1k)

dΘ(u∗1k)
|Θ(u∗1k)=0 = R0 > 1,

d2f(Θ(u∗1k)

dΘ(u∗1k)2
= −

2σ2(δ1 + γ1 − δ1δ2
δ2+γ2

)(1 + δ1
δ2+γ2

)

〈k〉
,

n∑
k=1

k3p(k)

[kσ(1 + δ1
δ2+γ2

)Θ∗ + γ1 + δ1 − δ1δ2
δ2+γ2

]3
< 0.

There exists an uniqueness solution of (4.3), and thus (4.3) has an uniqueness
solution 0 < u∗1k < 1.

Theorem 4.1. If R0 > 1, (4.1) has the endemic equilibrium E∗ and 0 < sk <
1, 0 < u∗1k < 1, 0 < u2k < 1.

Theorem 4.2. If R0 > 1, (2.3) is persistent with respect (∂Ω,
◦
Ω).

Proof. Under the assumption of Theorem 3.2, E0 is a covering of Ω, which is

isolate and is acyclic. Then we just need to prove Es(E0)∩
◦
Ω = ∅, where Es(E0) is

the stable manifold of E0. Since the global stability of E0, there exists a T1, for all
t > T1, one obtains

1− ε ≤ sk ≤ 1 + ε, 0 ≤ u1k ≤ ε, 0 ≤ u2k ≤ ε.

Then (2.3) leads to the follows inequalities
du1k(t)

dt
≥ k(1− ε)σΘ(u1k)− (γ1 + δ1)u1k + δ2u2k,

du2k(t)

dt
= δ1u1k − (γ2 + δ2)u2k.

(4.4)

Consider the following auxiliary system
du1k(t)

dt
= k(1− ε)σΘ(u1k)− (γ1 + δ1)u1k + δ2u2k,

du2k(t)

dt
= δ1u1k − (γ2 + δ2)u2k.

(4.5)

Let x = (u1k, u2k), (4.5) can be written as

dx

dt
= (F (ε)− V )x, (4.6)

where F (ε) is the function substituting 1 with 1 − ε in F , and V is defined by
(3.1). Since R0 > 1 and the arbitrary of ε, then the spectral radius of F (ε)− V is
larger than zero. Then x → +∞ as t → +∞. With the comparison of principle,
u1k → +∞ and u2k → +∞ as t→ +∞. This is a contradiction with the boundness
of u1k, u2k.

Theorem 4.3. If R0 > 1, and there exists a k such that k ≤ γ2Θ∗

δ1δ2s∗k
, then the

endemic equilibrium E∗ is globally asymptotically stable.
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Proof. From the third equation of (2.3), one can obtain

dΘ

dt
=

n∑
k=1

kp(k)u′1k

〈k〉

= 〈k〉−1
n∑
k=1

kp(k)[kσskΘ− (µ+ δ)u1k + δ2u2k (4.7)

= 〈k〉−1
σΘ

n∑
k=1

k2p(k)sk − (µ+ δ)Θ + δ2 〈k〉−1
n∑
k=1

kp(k)u2k.

Define a Lyapunov function

V =
1

2 〈k〉

n∑
k=1

kp(k)

s∗k
[(sk − s∗k)2 +

γ2

δ1
(u2k − u∗2k)2] + Θ−Θ∗ ln Θ.

Then the derivative of V along the solution of (2.1) is

V ′ =
1

〈k〉

n∑
k=1

kp(k)

s∗k
[(sk − s∗k)s′k +

γ2

δ1
(u2k − u∗2k)u′2k] + (1− Θ∗

Θ
)Θ′

=
1

〈k〉

n∑
k=1

kp(k)

s∗k
[(sk − s∗k)(−σkΘ + γ1u1k + γ2u2k) +

γ2

δ1
(u2k − u∗2k)(δ1u1k

− (δ2 + γ2)u2k)] + (1− Θ∗

Θ
)[〈k〉−1

σΘ

n∑
k=1

k2p(k)sk

− (µ+ δ1)Θ + δ2 〈k〉−1
n∑
k=1

kp(k)u2k]

=− 1

〈k〉

n∑
k=1

k2p(k)/s∗k(sk − s∗k)2 − γ2

δ1 〈k〉

n∑
k=1

kp(k)/s∗k(u2k − u∗2k)2

+
δ2

Θ∗ 〈k〉

n∑
k=1

kp(k)(Θ−Θ∗)(u2k − u2k)

− γ2

δ1 〈k〉

n∑
k=1

kp(k)/s∗k(u1k − u∗1k)(u2k − u∗2k)

− γ2

〈k〉

n∑
k=1

kp(k)
u2k

Θ
(Θ−Θ∗)2

− (δ1 + δ2 + γ2)
γ2

〈k〉

n∑
k=1

kp(k)/s∗k(u2k − u2k)2

=− 1

〈k〉

n∑
k=1

k2p(k)/s∗k(sk − s∗k)2 − γ2

δ1 〈k〉

n∑
k=1

kp(k)/s∗k(u2k − u∗2k)2

+
1

〈k〉

n∑
k=1

kp(k)(
kδ2
Θ∗
− γ2

δ1s∗k
)(u1k − u∗1k)(u2k − u∗2k)

− γ2

〈k〉

n∑
k=1

kp(k)
u2k

Θ
(Θ−Θ∗)2
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− (δ1 + δ2 + γ2)
γ2

〈k〉

n∑
k=1

kp(k)/s∗k(u2k − u∗2k)2. (4.8)

If there exists a k such that k ≤ γ2Θ∗

δ1δ2s∗k
, then (4.8) is less than 0. Since V ′ = 0

holds if and only if sk = s∗k, u1k = u∗1k, u2k = u∗2k for k = 1, 2, · · · , n. Hence, the
largest invariant set in Ω for V ′ = 0 is the singleton {E∗}. Due to [6], the endemic
equilibrium E∗ is globally asymptotically stable.

Remark 4.1. For the condition of Theorem 4.3, if k ≤ γ2Θ∗

δ1δ2s∗k
, that is kδ2

Θ∗ −
γ2
δ1s∗k
≤ 0,

then the derivative of V is

V ′ ≤− 1

〈k〉

n∑
k=1

k2p(k)/s∗k(sk − s∗k)2 − γ2

〈k〉

n∑
k=1

kp(k)
u2k

Θ
(Θ−Θ∗)2

− (
kδ2
2Θ∗

+
γ2

2δ1s∗k
+ δ1 + δ2 + γ2)

1

〈k〉

n∑
k=1

kp(k)(u2k − u2k)2

≤0.

If k ≥ γ2Θ∗

δ1δ2s∗k
, that is kδ2

Θ∗ −
γ2
δ1s∗k
≥ 0, then the derivative of V is

V ′ ≤− 1

〈k〉

n∑
k=1

k2p(k)/s∗k(sk − s∗k)2 − γ2

〈k〉

n∑
k=1

kp(k)
u2k

Θ
(Θ−Θ∗)2

+ (
kδ2
2Θ∗

− γ2

δ1s∗k
(3/2 + δ1 + δ2 + γ2))

1

〈k〉

n∑
k=1

kp(k)(u2k − u2k)2.

Therefore, if kδ2
Θ∗ ≤

2γ2
δ1s∗k

(3/2 + δ1 + δ2 + γ2), then V ′ ≤ 0.

Hence, if k ≤ 2γ2Θ∗

δ1δ2s∗k
(3/2 + δ1 + δ2 + γ2), then the endemic equilibrium E∗ is

globally asymptotically stable.

5. Sensitivity Analysis and Simulation

In this section, from Theorem 3.2 and Theorem 4.2, the reproduction number R0 is
a key threshold for the control of the disease. It is necessary for R0 to the terms of
transmission parameters to do sensitive analysis. Thus, the reproduction number
is changed according with the single parameter defined as follows:

∂R0

∂σ
=

δ2 + γ2

γ1(δ1 + δ2) + γ2δ1

〈
k2
〉

〈k〉
> 0,

∂R0

∂γ1
= −σ (δ1 + δ2)(δ2 + γ2)

[γ1(δ1 + δ2) + γ2δ1]2

〈
k2
〉

〈k〉
> 0,

∂R0

∂γ2
= σ

γ1(δ1 + δ2)− δ1δ2
[γ1(δ1 + δ2) + γ2δ1]2

〈
k2
〉

〈k〉
,

∂R0

∂δ1
= −σ (δ1 + δ2)(γ1 + γ2)

[γ1(δ1 + δ2) + γ2δ1]2

〈
k2
〉

〈k〉
< 0,

∂R0

∂δ2
= σ

γ1(δ1 − γ2) + γ2δ1
[γ1(δ1 + δ2) + γ2δ1]2

〈
k2
〉

〈k〉
.

(5.1)
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From the computation results, decreasing transmission rate, improving the cure
rate for the drug-taking and detoxification rate are helpful to protect the outbreak
of the drug transmission. From the medical knowledge, the forcing a drug-taking
to give up the drug behavior is more prone than curing a drug-taking back to a
susceptible person, i.e, δ1 > γ1. So cutting the way for the drug detoxification to
contact with the drug-taking is efficient way to control the drug transmission. For
the cure level for the drug detoxification, this is a complex problem for control of the
drug behavior. If the cure rate for the drug-taking is large enough, improving the
treatment for the drug detoxification is harmful for control the disease. While the
cure rate for the drug-taking is small enough and the detoxification is large enough,
improving the treatment for the drug detoxification is helpful for control the drug
transmission. For the importance of R0 between the two parameters, elasticity is a
powerful tool to help us to realize it. According to the definition of elasticity, the
elasticity of R0 to the parameters, σ, γ1,γ2,δ1 and δ2 are

EσR0
= σ

R0

∂R0

∂σ = 1,

Eγ1R0
=
γ1

R0

∂R0

∂γ1
= − γ1(δ1 + δ2)

γ1(δ1 + δ2) + γ2δ1
,

Eγ2R0
=
γ2

R0

∂R0

∂γ2
=

γ2[γ1(δ1 + δ2)− δ1δ2]

(γ1(δ1 + δ2) + γ2δ1)(δ2 + γ2)
,

Eδ1R0
= δ1

R0

∂R0

∂δ1
= − δ1(δ1 + δ2)(γ1 + γ2)

(γ1(δ1 + δ2) + γ2δ1)(δ2 + γ2)
,

Eδ2R0
= δ2

R0

∂R0

∂δ2
=

δ2[γ1(δ1 − γ2) + γ2δ1]

(γ1(δ1 + δ2) + γ2δ1)(δ2 + γ2)
.

(5.2)

From these expressions, it follows that changing σ,γ1, γ2, δ1 and δ2 have the some
effect on the basic reproduction number R0. For the convenience, we rewrite Ei =
|EiR0

|, i = σ, γ1, γ2, δ1, δ2. What’s more, it is easy to see that Eσ > Eγ1 and Eδ1 >

Eδ2 . If γ2[γ1(δ1 + δ2)− δ1δ2] > δ1(δ1 + δ2)(γ1 + γ2), then Eσ > Eγ1 > Eγ2 > Eδ1 >
Eδ2 . Cutting the way that the susceptible individuals contact the group of the drug-
taking is most effective method for control the drug transmission. While the effect
for cutting the way that the drug detoxification again contact the group of the drug-
taking is weaker than the way for the susceptible. If γ1(δ1 + δ2) < δ1δ2, then Eδ2 >
Eγ2 . This may lead to Eδ1 > Eδ2 > Eγ2 > Eσ > Eγ1 which means that improving
the detoxification rate is the best control method for the drug transmission. In order
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Figure 1. The logarithm of the basic reproduction number of system (2.1). logR0 is shown (a) when
γ1 is increased from 0 to 1 and σ is varied from 0 to 1 when δ1 = 0.1; (b) when δ1 is increased from 0
to 1 and σ is varied from 0 to 1 when γ1 = 0.1.
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to illustrate these results, we set m = 3, n = 100, γ2 = 2, δ2 = 0.2, p(k) = 2m2k−3.
Figure 4 (a) gives R0 relations with the transmission rate σ and cure rate γ1 for the
drug-taking. It says that the basic reproduction number R0 decreases as increase as
the cure rate γ1 and decreasing the transmission rate σ. Visually the transmission
rate σ has the greater effect than the cure rate γ1. Fig 5.1 (b) shows the relations of
the reproduction number R0 with the transmission rate σ and the detoxification rate
δ1. It shows that the transmission rate has the greater effect than the detoxification
rate.
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Figure 2. The logarithm of the basic reproduction number of system (2.1). logR0 is shown (a) when
γ1 is increased from 1 to 2 and δ1 is varied from 1 to 2 if γ2 = 2, δ2 = 0.2; (b) when γ2 is increased from
0 to 5 and δ2 is varied from 0 to 4 if γ1 = 0.1, δ1 = 0.1.

Figure 2 (a) shows the relations of the reproduction number R0 with the cure
rate γ1 and detoxification rate δ1. It shows that the cure rate almost has same
effect than the detoxification rate. (b) shows that the basic reproduction number
R0 is larger than 1 even if the cure rate γ2 for the drug detoxification is large while
the temptation rate δ2 is large enough. The effective method for control the drug
transmission is improving the treatment rate γ2 for the drug detoxification and
decreasing the temptation rate δ2. Temptation rate has the greater effect than the
treatment rate γ2.
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Figure 3. Simulated results of system (2.3). (a) The time evolution of the drug-taking node for an
initial condition. (b) The time evolution of the drug detoxification node for an initial condition.

In order to illustrate the theoretical results, set σ = 0.01, γ1 = 0.1, γ2 = 0.2, δ1 =
0.05, δ2 = 0.2 We choose BA scale-free network with m = 3, N = 100. Then
R0 = 0.5944 < 1. According to Theorem 3.2, disease-free equilibrium is globally
stable. (See Figure 3).

If we enlarge the transmission rate σ = 0.02. Then R0 = 1.1888 > 1. According
to Theorem 4.3, then the endemic equilibrium E∗ is globally asymptotically stable.
(See Figure 4).
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Figure 4. Simulated results of system (2.3). (a) The time evolution of the drug-taking node for an
initial condition. (b) The time evolution of the drug detoxification node for an initial condition.

6. Discussion

In this paper, a heroin epidemic model on complex network is investigated. The
threshold for extinction and persistence of the disease is obtained. The global
stability of the equilibria is also presented. Sensitivity of the basic reproduction
number to the parameters in system (2.3) is described. Some simulations illustrate
our results. Decreasing the transmission rate and improving the detoxification rate
are the effective methods for control the drug transmission spread. This means
enhancing the propaganda for the drug transmission and increasing the compulsory
treatment measures for the drug-taking individuals are the effective measures for
control the drug transmission spread. From the above discussion, if we want to cut
the spread of the drug transmission, one must decrease the transmission rate below

the critical value σcritical = 〈k〉
〈k2〉 [δ1 + γ1 − δ2δ1

δ2+γ2
].

Combining the knowledge of disease transmissibility, complex network structures
with a good strategy is useful to mitigate the effects of a heroin epidemic outbreak.
Because of the complexities of the model, we just discuss a heroin epidemic model
on a static complex network. The population maintains some level, it is a constant.
In fact, the population should be varying due to the disease death rate and the input
of the population. This leads that one node of the network is lost or added, then the
structure of the network will be change. In addition, the complex dynamics such
as oscillations and chaotic attractors of these models inducing by complex network
are also very interesting. Heroin mathematical epidemic models are useful to design
public health policies. Without a doubt estimating model parameters is realistic.
We will refer some heroin epidemic database and then apply it to the model. These
may be our future work.
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