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1. Introduction

In this paper we assume that

N = {1, 2, 3, · · · }, k ∈ N \ {1},−1 ≤ B < A ≤ 1, B ≤ 0 and 0 ≤ λ ≤ 1. (1.1)

For two functions f and g analytic in the open unit disk U = {z : |z| < 1}, the
function f is said to be subordinate to g, written f(z) ≺ g(z) (z ∈ U), if there exists
an analytic function w in U with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)).

Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1.2)

which are analytic in U .
Let

fj(z) = z +

∞∑
n=2

an,jz
n ∈ A (j = 1, 2).

Then the Hadamard product (or convolution) of f1 and f2 is defined by

(f1 ∗ f2)(z) = z +

∞∑
n=2

an,1an,2z
n.

We shall require the following lemma in our investigation.

Lemma 1.1. Let f ∈ A defined by (1.2) satisfy

∞∑
n=2

[(1− λ+ λn)(1−B)− (1−A)δn,k]|an| ≤ A−B, (1.3)
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where

δn,k =

0
(
n−1
k /∈ N

)
,

1
(
n−1
k ∈ N

)
.

(1.4)

Then
(1− λ)f(z) + λzf ′(z)

fk(z)
≺ 1 +Az

1 +Bz
(z ∈ U), (1.5)

where

fk(z) =
1

k

k−1∑
j=0

ε−jk f(εjkz) and εk = exp

(
2πi

k

)
. (1.6)

Proof. For f ∈ A defined by (1.2), the function fk(z) in (1.6) can be expressed
as

fk(z) = z +

∞∑
n=2

δn,kanz
n, (1.7)

with

δn,k =
1

k

k−1∑
j=0

ε
j(n−1)
k =

0
(
n−1
k /∈ N

)
,

1
(
n−1
k ∈ N

)
.

In view of (1.1) and (1.4), we see that

Aδn,k −B(1− λ+ λn) ≥ 0 (n ≥ 2). (1.8)

Assume that the inequality (1.3) holds. Then from (1.7) and (1.8) we deduce
that∣∣∣∣∣∣

(1−λ)f(z)+λzf ′(z)
fk(z)

− 1

A−B (1−λ)f(z)+λzf ′(z)
fk(z)

∣∣∣∣∣∣ =

∣∣∣∣ ∑∞
n=2(1− λ+ λn− δn,k)anz

n−1

A−B +
∑∞
n=2[Aδn,k −B(1− λ+ λn)]anzn−1

∣∣∣∣
≤

∑∞
n=2(1− λ+ λn− δn,k)|an|

A−B −
∑∞
n=2[Aδn,k −B(1− λ+ λn)]|an|

≤ 1 (|z| = 1).

Thus, by the maximum modulus theorem, we have (1.5).
Now we introduce the following two subclasses of A.

Definition 1.1. A function f ∈ A defined by (1.2) is said to be in the class
Hk(λ,A,B) if and only if it satisfies the coefficient inequality (1.3).

It follows from Lemma 1.1 that, if f ∈ Hk(λ,A,B), then the subordination
relation (1.5) holds.

Definition 1.2. A function f ∈ A defined by (1.2) is said to be in the class
Mk(λ,A,B) if and only if it satisfies

∞∑
n=2

n[(1− λ+ λn)(1−B)− (1−A)δn,k]|an| ≤ A−B. (1.9)

It is clear that for f ∈ A,

f ∈Mk(λ,A,B)⇐⇒ zf ′ ∈ Hk(λ,A,B). (1.10)
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In particular, by taking λ = 1 and the Lemma 1.1, we see that each function
in the classes Hk(1, A,B) and Mk(1, A,B) is starlike with respect to k-symmetric
points. Analytic (and meromorphic) functions which are starlike with respect to
symmetric points and related functions have been extensively studied by several
authors (see, e.g., [1] to [5], [8] to [10] and [13] to [25]; see also the recent works
[8, 18,23,24]).

In the present paper, we derive several convolution properties for each of the
above-defined classesHk(λ,A,B), Mk(λ,A,B).Our results are motivated by a num-
ber of recent works (see, for example, [1] to [25]).

2. Convolution properties

In this section we assume that

− 1 ≤ Bj < Aj ≤ 1 and Bj ≤ 0 (j = 1, 2). (2.1)

Theorem 2.1. Let fj ∈ Hk(λ,Aj , Bj) (j = 1, 2).

(i) If

(1−B1)(A2−B2)+(1−B2)(A1−B1) ≥ (1−B1)(1−B2) and 0 ≤ λ ≤ 1, (2.2)

then f1 ∗ f2 ∈ Hk(λ,A(B), B), where

A(B) = B +
1−B
1 + λ

2∏
j=1

Aj −Bj
1−Bj

, (2.3)

and for each B the number A(B) cannot be replaced by a smaller one.

(ii) If

(1−B1)(A2−B2)+(1−B2)(A1−B1) < (1−B1)(1−B2) and λ1 ≤ λ ≤ 1, (2.4)

where

λ1 =
(1−B1)(1−B2)− [(1−B1)(A2 −B2) + (1−B2)(A1 −B1)]

(k − 1)(1−B1)(1−B2)
∈ (0, 1),

(2.5)
then f1 ∗ f2 ∈ Hk(λ,A(B), B) and for each B the number A(B) cannot be
replaced by a smaller one.

(iii) If

(1−B1)(A2−B2)+(1−B2)(A1−B1) < (1−B1)(1−B2) and 0 ≤ λ < λ1, (2.6)

then f1 ∗ f2 ∈ Hk(λ, Ã(B), B), where

Ã(B) = B +
1−B

λk
∏2
j=1

1−Bj

Aj−Bj
+
∑2
j=1

1−Bj

Aj−Bj

, (2.7)

and for each B the number Ã(B) cannot be replaced by a smaller one.
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Proof. It is obvious that B < A(B) < 1 and B < Ã(B) < 1. Let

fj(z) = z +

∞∑
n=2

an,jz
n ∈ Hk(λ,Aj , Bj) (j = 1, 2).

Then

∞∑
n=2


2∏
j=1

(1− λ+ λn)(1−Bj)− (1−Aj)δn,k
Aj −Bj

 |an,1an,2|
≤

2∏
j=1

{ ∞∑
n=2

(1− λ+ λn)(1−Bj)− (1−Aj)δn,k
Aj −Bj

|an,j |

}
≤ 1. (2.8)

Also, f1 ∗ f2 ∈ Hk(λ,A,B) if and only if

∞∑
n=2

(1− λ+ λn)(1−B)− (1−A)δn,k
A−B

|an,1an,2| ≤ 1. (2.9)

In order to prove Theorem 2.1, it follows from (2.8) and (2.9) that we need only to
find the smallest A such that

(1− λ+ λn)(1−B)− (1−A)δn,k
A−B

≤
2∏
j=1

(1− λ+ λn)(1−Bj)− (1−Aj)δn,k
Aj −Bj

(2.10)
for all n ≥ 2, that is, that

A ≥ B +
(1−B)(1− λ+ λn− δn,k)∏2

j=1

{
(1−λ+λn−δn,k)(1−Bj)

Aj−Bj
+ δn,k

}
− δn,k

(n ≥ 2). (2.11)

For n ≥ 2 and n−1
k ∈ N , we have δn,k = 1, n = 1 +mk(m ∈ N) and

A ≥ B +
1−B

λ(n− 1)
∏2
j=1

1−Bj

Aj−Bj
+
∑2
j=1

1−Bj

Aj−Bj

= ϕ(n). (2.12)

The function ϕ(n) is decreasing in n and hence

ϕ(n) ≤ ϕ(1 + k) = B +
1−B

λk
∏2
j=1

1−Bj

Aj−Bj
+
∑2
j=1

1−Bj

Aj−Bj

. (2.13)

For n ≥ 2 and n−1
k /∈ N , we have δn,k = 0, δ1+m,k = 0 (1 ≤ m ≤ k − 1) and

A ≥ B +
1−B

(1− λ+ λn)
∏2
j=1

1−Bj

Aj−Bj

= ψ(n). (2.14)

It is clear that

ψ(n) ≤ ψ(2) = B +
1−B

(1 + λ)
∏2
j=1

1−Bj

Aj−Bj

. (2.15)
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From (2.13) and (2.15), we have

λk

2∏
j=1

1−Bj
Aj −Bj

+

2∑
j=1

1−Bj
Aj −Bj

− (1 + λ)

2∏
j=1

1−Bj
Aj −Bj

=
h(λ)

(A1 −B1)(A2 −B2)
, (2.16)

where

h(λ) = (λk−λ−1)(1−B1)(1−B2)+(1−B1)(A2−B2)+(1−B2)(A1−B1). (2.17)

Note that h(1) > 0 and

h(0) = (1−B1)(A2 −B2) + (1−B2)(A1 −B1)− (1−B1)(1−B2). (2.18)

If either (2.2) or (2.4) is satisfied, then it follows from (2.10) to (2.18) that
h(λ) ≥ 0, ϕ(1 + k) ≤ ψ(2) and f1 ∗ f2 ∈ Hk(λ,A(B), B).

Furthermore, for B < A0 < A(B), we have

(1 + λ)(1−B)

A0 −B

2∏
j=1

Aj −Bj
(1 + λ)(1−Bj)

>
(1 + λ)(1−B)

A(B)−B

2∏
j=1

Aj −Bj
(1 + λ)(1−Bj)

= 1.

Therefore the functions

fj(z) = z − Aj −Bj
(1 + λ)(1−Bj)

z2 ∈ Hk(λ,Aj , Bj) (j = 1, 2),

show that f1 ∗ f2 /∈ Hk(λ,A0, B). This proves (i) and (ii).
(iii) If (2.6) is satisfied, then we have h(λ) < 0 (0 ≤ λ < λ1), ψ(2) < ϕ(1 + k)

and f1 ∗ f2 ∈ Hk(λ, Ã(B), B). Furthermore, the number Ã(B) cannot be replaced
by a smaller one as can be seen from the functions

fj(z) = z − Aj −Bj
(1 + λk)(1−Bj)− (1−Aj)

z1+k ∈ Hk(λ,Aj , Bj) (j = 1, 2).

The proof of Theorem 2.1 is completed.

Theorem 2.2. Let f1 ∈ Hk(λ,A1, B1), f2 ∈Mk(λ,A2, B2) and let A(B), Ã(B), λ1
be given as in Theorem 2.1.

(i) If (1−B1)(A2 −B2) + (1−B2)(A1 −B1) ≥ (1−B1)(1−B2) and 0 ≤ λ ≤ 1,
then f1 ∗ f2 ∈ Mk(λ,A(B), B) and for each B the number A(B) cannot be
replaced by a smaller one.

(ii) If (1−B1)(A2−B2) + (1−B2)(A1−B1) < (1−B1)(1−B2) and λ1 ≤ λ ≤ 1,
then f1 ∗ f2 ∈ Mk(λ,A(B), B) and for each B the number A(B) cannot be
replaced by a smaller one.

(iii) If (1−B1)(A2−B2) + (1−B2)(A1−B1) < (1−B1)(1−B2) and 0 ≤ λ < λ1,

then f1 ∗ f2 ∈ Mk(λ, Ã(B), B) and for each B the number Ã(B) cannot be
replaced by a smaller one.
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Proof. Since

f1 ∈ Hk(λ,A1, B1), zf ′2 ∈ Hk(λ,A2, B2) (see(1.10)),

and

f1(z) ∗ zf ′2(z) = z(f1 ∗ f2)′(z) (z ∈ U),

the assertion of the theorem follows from Theorem 2.1.

Theorem 2.3. Let f1 ∈ Hk(λ,A1, B1) and f2 ∈Mk(λ,A2, B2).

(i) If the equation

h1(λ) = a1λ
2 + b1λ+ c1 = 0 (2.19)

has no root in (0,1), where
a1 = (k2 + k − 2)(1−B1)(1−B2),

b1 = (1 + k)[(1−B1)(A2 −B2) + (1−B2)(A1 −B1)]− 2(1−B1)(1−B2),

c1 = (A1 −B1)(A2 −B2),

(2.20)
then f1 ∗ f2 ∈ Hk(λ,A1(B), B), where

A1(B) = B +
1−B

2(1 + λ)

2∏
j=1

Aj −Bj
1−Bj

, (2.21)

and for each B the number A1(B) cannot be replaced by a smaller one.

(ii) If the equation (2.19) has two roots λ1, λ2 (λ1 ≤ λ2) in (0, 1) and 0 ≤ λ ≤ λ1
or λ2 ≤ λ ≤ 1, then f1 ∗ f2 ∈ Hk(λ,A1(B), B) and for each B the number
A1(B) cannot be replaced by a smaller one.

(iii) If the equation (2.19) has two roots λ1, λ2 (λ1 < λ2) in (0, 1) and λ1 < λ < λ2
,then f1 ∗ f2 ∈ Hk(λ, Ã1(B), B), where

Ã1(B) = B +
1−B

λk(1 + k)
∏2
j=1

1−Bj

Aj−Bj
+ (1 + k)

∑2
j=1

1−Bj

Aj−Bj
+ 1

λ

, (2.22)

and for each B the number Ã1(B) cannot be replaced by a smaller one.

Proof. Clearly B < A1(B) < 1 and B < Ã1(B) < 1. In order to prove Theorem
2.3, we need only to find the smallest A such that

(1− λ+ λn)(1−B)− (1−A)δn,k
A−B

≤ n
2∏
j=1

(1− λ+ λn)(1−Bj)− (1−Aj)δn,k
Aj −Bj

,

(2.23)
for all n ≥ 2, that is, that

A ≥ B +
(1− λ+ λn− δn,k)(1−B)

n
∏2
j=1

{
(1−λ+λn−δn,k)(1−Bj)

Aj−Bj
+ δn,k

}
− δn,k

(n ≥ 2). (2.24)
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For n ≥ 2 and n−1
k ∈ N , (2.24) reduces to

A ≥ B +
1−B

λn(n− 1)
∏2
j=1

1−Bj

Aj−Bj
+ n

∑2
j=1

1−Bj

Aj−Bj
+ 1

λ

= ϕ1(n). (2.25)

The function ϕ1(n) is decreasing in n and hence

ϕ1(n) ≤ ϕ1(1 + k)

= B +
1−B

λk(1 + k)
∏2
j=1

1−Bj

Aj−Bj
+ (1 + k)

∑2
j=1

1−Bj

Aj−Bj
+ 1

λ

= Ã1(B). (2.26)

For n ≥ 2 and n−1
k /∈ N , (2.24) becomes

A ≥ B +
1−B

n(1− λ+ λn)
∏2
j=1

1−Bj

Aj−Bj

= ψ1(n) (2.27)

and we have

ψ1(n) ≤ ψ1(2) = B +
1−B

2(1 + λ)
∏2
j=1

1−Bj

Aj−Bj

= A1(B). (2.28)

Now

λk(1 + k)

2∏
j=1

1−Bj
Aj −Bj

+ (1 + k)

2∑
j=1

1−Bj
Aj −Bj

+
1

λ
− 2(1 + λ)

2∏
j=1

1−Bj
Aj −Bj

=
h1(λ)

λ(A1 −B1)(A2 −B2)
, (2.29)

where

h1(λ) = λ2k(1 + k)(1−B1)(1−B2) + λ(1 + k)[(1−B1)(A2 −B2)

+ (1−B2)(A1 −B1)] + (A1 −B1)(A2 −B2)− 2λ(1 + λ)(1−B1)(1−B2)

= a1λ
2 + b1λ+ c1, (2.30)

and a1, b1, c1 are given by (2.20). Note that a1 > 0, h1(0) = c1 > 0 and h1(1) =
(k2 +k−4)(1−B1)(1−B2)+(1+k)[(1−B1)(A2−B2)+(1−B2)(A1−B1)]+(A1−
B1)(A2 −B2) > 0 (see (1.1)). Therefore, the equation h1(λ) = a1λ

2 + b1λ+ c1 = 0
has no root in (0, 1) or has two roots in (0, 1).

The remaining part of the proof is similar to that as in Theorem 2.1 and hance
we omit it.

Furthermore, the number A1(B) is best possible for the functions

f1(z) = z − A1 −B1

(1 + λ)(1−B1)
z2 ∈ Hk(λ,A1, B1),

f2(z) = z − A2 −B2

2(1 + λ)(1−B2)
z2 ∈Mk(λ,A2, B2),
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and the number Ã1(B) is best possible for the functions

f1(z) = z − A1 −B1

(1 + λk)(1−B1)− (1−A1)
zk+1 ∈ Hk(λ,A1, B1),

f2(z) = z − A2 −B2

(1 + k)[(1 + λk)(1−B2)− (1−A2)]
zk+1 ∈Mk(λ,A2, B2).

The proof of the theorem is completed.
From Theorem 2.3 we have the following theorem immediately.

Theorem 2.4. Let fj ∈ Mk(λ,Aj , Bj) (j = 1, 2) and let A1(B), Ã1(B), h1(λ) be
given as in Theorem 2.3.

(i) If the equation (2.19) has no roots in (0, 1), then f1 ∗ f2 ∈ Mk(λ,A1(B), B)
and for each B the number A1(B) cannot be replaced by a smaller one.

(ii) If the equation (2.19) has two roots λ1, λ2 (λ1 ≤ λ2) in (0, 1) and 0 ≤ λ ≤ λ1
or λ2 ≤ λ ≤ 1, then f1 ∗ f2 ∈ Mk(λ,A1(B), B) and for each B the number
A1(B) cannot be replaced by a smaller one.

(iii) If the equation (2.19) has two roots λ1, λ2 (λ1 < λ2) in (0, 1) and λ1 < λ < λ2,

then f1 ∗ f2 ∈ Mk(λ, Ã1(B), B) and for each B the number Ã1(B) cannot be
replaced by a smaller one.

Theorem 2.5. Let fj ∈Mk(λ,Aj , Bj) (j = 1, 2).

(i) If the equation
h2(λ) = a2λ

2 + b2λ+ c2, (2.31)

has no root in (0,1), where
a2 = [k(1 + k)2 − 4](1−B1)(1−B2),

b2 = (1 + k)2[(1−B1)(A2 −B2) + (1−B2)(A1 −B1)]− 4(1−B1)(1−B2),

c2 = (2 + k)(A1 −B1)(A2 −B2),

(2.32)
then f1 ∗ f2 ∈ Hk(λ,A2(B), B), where

A2(B) = B +
1−B

4(1 + λ)

2∏
j=1

Aj −Bj
1−Bj

,

and for each B the number A2(B) cannot be replaced by a smaller one.

(ii) If the equation (2.31) has two roots λ1, λ2 (λ1 ≤ λ2) in (0, 1) and 0 ≤ λ ≤ λ1
or λ2 ≤ λ ≤ 1, then f1 ∗ f2 ∈ Hk(λ,A2(B), B) and for each B the number
A2(B) cannot be replaced by a smaller one.

(iii) If the equation (2.31) has two roots λ1, λ2 (λ1 < λ2) in (0, 1) and λ1 < λ < λ2
,then f1 ∗ f2 ∈ Hk(λ, Ã2(B), B), where

Ã2(B) = B +
1−B

λk(1 + k)2
∏2
j=1

1−Bj

Aj−Bj
+ (1 + k)2

∑2
j=1

1−Bj

Aj−Bj
+ 2+k

λ

,

and for each B the number Ã2(B) cannot be replaced by a smaller one.
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Proof. We have B < A2(B) < 1 and B < Ã2(B) < 1. In order to prove Theorem
2.5, we need only to find the smallest A such that

(1− λ+ λn)(1−B)− (1−A)δn,k
A−B

≤ n2
2∏
j=1

(1− λ+ λn)(1−Bj)− (1−Aj)δn,k
Aj −Bj

(n ≥ 2).
(2.33)

For n ≥ 2 and n−1
k ∈ N , (2.33) becomes

A ≥ B +
1−B

λn2(n− 1)
∏2
j=1

1−Bj

Aj−Bj
+ n2

∑2
j=1

1−Bj

Aj−Bj
+ n+1

λ

= ϕ2(n).

The function ϕ2(n) is decreasing in n and

ϕ2(n) ≤ ϕ2(1 + k) = B +
1−B

λk(1 + k)2
∏2
j=1

1−Bj

Aj−Bj
+ (1 + k)2

∑2
j=1

1−Bj

Aj−Bj
+ 2+k

λ

= Ã2(B).

For n ≥ 2 and n−1
k /∈ N , (2.33) reduces to

A ≥ B +
1−B

n2(1− λ+ λn)
∏2
j=1

1−Bj

Aj−Bj

= ψ2(n),

and

ψ2(n) ≤ ψ2(2) = B +
1−B

4(1 + λ)
∏2
j=1

1−Bj

Aj−Bj

= A2(B).

Now

λk(1 + k)2
2∏
j=1

1−Bj
Aj −Bj

+ (1 + k)2
2∑
j=1

1−Bj
Aj −Bj

+
2 + k

λ
− 4(1 + λ)

2∏
j=1

1−Bj
Aj −Bj

=
h2(λ)

λ(A1 −B1)(A2 −B2)
,

where

h2(λ) = λ2k(1 + k)2(1−B1)(1−B2) + λ(1 + k)2[(1−B1)(A2 −B2)

+ (1−B2)(A1 −B1)] + (2 + k)(A1 −B1)(A2 −B2)− 4λ(1 + λ)

· (1−B1)(1−B2) = a2λ
2 + b2λ+ c2,

and a2, b2, c2 are given by (2.32). Note that a2 > 0, h2(0) = c2 > 0 and h2(1) =
[k(1 + k)2− 8](1−B1)(1−B2) + (1 + k)2[(1−B1)(A2−B2) + (1−B2)(A1−B1)] +
(2 + k)(A1 −B1)(A2 −B2) > 0 (see (1.1)).

The remaining part of the proof is similar to that as in Theorem 2.1 and hence
we omit it.
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Theorem 2.6. Let f ∈ Hk(λ,A,B). Then

(f ∗ hσ)(z) 6= 0 (z ∈ U \ {0}; σ ∈ C, |σ| = 1), (2.34)

where

hσ(z) = z − 1 +Bσ

1 +Aσ

[
(1− λ)z

1− z
+

λz

(1− z)2

]
+

z1+k

1− zk
.

Proof. For f ∈ Hk(λ,A,B), we have (1.4), which is equivalent to

(1− λ)f(z) + λzf ′(z)

fk(z)
6= 1 +Aσ

1 +Bσ
(z ∈ U ; σ ∈ C, |σ| = 1, 1 +Bσ 6= 0), (2.35)

or to

(1 +Bσ)[(1− λ)f(z) + λzf ′(z)]− (1 +Aσ)fk(z) 6= 0 (z ∈ U \ {0};σ ∈ C, |σ| = 1).
(2.36)

Note that

zf ′(z) = f(z) ∗ (z +

∞∑
n=2

nzn)

= f(z) ∗ z

(1− z)2
. (2.37)

If we put

fk(z) = f(z) ∗ (z + g(z)), (2.38)

then

g(z) =

∞∑
n=2

δn,kz
n =

∞∑
m=1

z1+mk =
z1+k

1− zk
. (2.39)

Making use of (2.35)-(2.39), we have

f(z) ∗
{

(1 +Bσ)

[
(1− λ)z

1− z
+

λz

(1− z)2

]
− (1 +Aσ)

(
z +

z1+k

1− zk

)}
6= 0,

for z ∈ U \ {0}, σ ∈ C and |σ| = 1. This leads to the desired result (2.34).

Theorem 2.7. Let f ∈ Mk(λ,A,B) and hσ(z) be the same as in Theorem 2.6.
Then

f(z) ∗ zh′σ(z) 6= 0 (z ∈ U \ {0}; σ ∈ C, |σ| = 1).

Proof. Since

f ∈Mk(λ,A,B)⇐⇒ zf ′ ∈ Hk(λ,A,B),

it follows from Theorem 2.6 that

f(z) ∗ zh′σ(z) = zf ′(z) ∗ hσ(z) 6= 0,

for z ∈ U \ {0}, σ ∈ C and |σ| = 1.
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3. Applications

To make objects invisible to human eyes has been long a subject of science fiction.
But just in 2006, this imagination has been materialized in the range of microwave
radiation. This is attributed two pioneering papers published in Science by Leon-
hardt [6] and Pendry et al. [11] in 2006, in which they proposed an ingenious idea
to control electromagnetic waves by a specially designed materials. They suggest
that a cloak, made of metamaterial (in which the refractive index spatially varies),
can be designed so that an incident electromagnetic wave can be guided through
the cloak giving an impression of free space when viewed from outside. This ensures
that the cloak neither reflects nor scatters waves nor casts a shadow in the trans-
mitted field. The cloak remains undetected by a viewing device. At the same time
the cloak reduces scattering of radiation from the object where the imperfections
are exponentially small. Hence the object becomes invisible to the detector.

Reports are available in the published literature (see, e.g., [6, 11]) that elec-
tromagnetic cloaking, which seemed impossible earlier, is technologically realizable
when the cloak and the cloaked object have a circular symmetry in at least one
plane, namely: spheres and cylinders. The cross section is a laminar or two dimen-
sional cloaking.

Mathematically, the two dimensional cloak and the cloaked object are simply
connected regions in the complex plane, the later being a subset of the former. By
the Riemann mapping theorem both the regions are equivalent to conformal maps
on the unit disk U . If we denote the cloaked object by the function g(z) and the
cloak by the function q(z) then it is required that

g(z) ≺ q(z) (z ∈ U). (3.1)

Very recently Mishra, Panigrahi and Mishra [7] have given some applications of
subordination relationship (3.1) to electromagnetic cloaking. In the present paper,
we found certain sufficient conditions under which relationship of the form (3.1)
holds for functions which are more general than circular maps. For example, in
Lemma 1.1, we have taken the cloak function

q(z) =
1 +Az

1 +Bz
, (3.2)

to be an analytic univalent convex map. If a function f(z) satisfies the condition
(1.3), then the subordination relationship (3.1) holds true. All results in this paper
are based on the condition (1.3).
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