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Abstract In this paper, we study the Riemann problem with the initial data
containing the Dirac delta function for the relativistic Chaplygin Euler equa-
tions. Under the generalized Rankine-Hugoniot conditions and entropy con-
dition, we constructively obtain the global existence of generalized solutions
including delta shock waves that explicitly exhibit four kinds of different struc-
tures. Moreover, we obtain the stability of generalized solutions by making
use of the perturbation of the initial data.
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1. Introduction

The Euler system of conservation laws of energy and momentum for a Chaplygin
gas in special relativity reads (cf. [4, 6, 19])

(
(p+ ρc2) v2

c2(c2−v2) + ρ

)
t

+

(
(p+ ρc2) v

c2−v2

)
x

= 0,(
(p+ ρc2) v

c2−v2

)
t

+

(
(p+ ρc2) v2

c2−v2 + p

)
x

= 0,

(1.1)

where ρ and v represent the proper energy density, the pressure and the particle
speed, respectively, and the constant c is the speed of light; the equations of state
is

p(ρ) = −1

ρ
(1.2)

with ρ > 0. System (1.1) models the dynamics of plane waves in special relativistic
fluids in a two dimensional Minkowski time-space (x0, x1) :

divT = 0, (1.3)

where T is the stress-energy tensor for the fluid:

T ij = (p+ ρc2)vivj + pηij , (1.4)
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with all indices running from 0 to 1 with x0 = ct. In (1.4),

ηij = ηij = diag(−1, 1),

denotes the flat Minkowski metric, v the 2-velocity of the fluid particle, and ρ the
mass-energy density of the fluid as measured in units of mass in a reference frame
moving with the fluid particle.

The Newtonian limit (vc → 0) of system (1.1) and (1.2) is the following classical
Euler system for compressible isentropic fluids:ρt + (ρv)x = 0,

(ρv)t + (ρv2 + p)x = 0,
(1.5)

In general, a solution to systems (1.1) or (1.5) strongly depends on the state
equation p = p(ρ), which expresses how the pressure p depends on the density ρ.
For a polytropic gas, it can be expressed as

p(ρ) = k2ργ(γ > 1, k < c), (1.6)

for which systems (1.1) and (1.5) have extensively been studied by Chang and
Hsiao [2], Chen etal. [3, 4], etc. For a Chaplygin gas, Brenier [1] firstly studied
the 1-D Riemann problem and obtained solutions with concentration when initial
data belong to a certain domain in the phase plane. Furthermore, Guo, Sheng, and
Zhang [8] abandoned this constrain and constructively obtained the global solutions
to the 1-D Riemann problem, in which the δ-shock developed. Moreover, they
also systematically studied the 2-D Riemann problem for isentropic Chaplygin gas
equations. For the 2-D case, we can also refer to [15] in which D. Serre studied the
interaction of the pressure waves for the 2-D isentropic irrotational Chaplygin gas
and constructively proved the existence of transonic solutions for two cases, saddle
and vortex of 2-D Riemann problem. Recently, Wang and Zhang [21] studied the
Riemann problem with delta initial data for the one-dimensional Chaplygin gas
equations. However, it is noticed that few literatures contribute to system (1.1)
for a Chaplygin gas so far. Recently, Cheng and Yang [6] proved the existence
and uniqueness of delta shock solutions of Riemann problem for the relativistic
Chaplygin Euler equations (1.1) and (1.2). In particular, the delta shock waves
appear in the Riemann solutions of (1.1) and (1.2). From the mathematical point
of view, a delta shock wave is more compressive than an ordinary shock wave in
the sense that more characteristics enter the discontinuity line of the delta shock
wave. From the physical point of view, a delta shock represents the process of
concentration of the mass. As for delta shock waves, we refer readers to [5–12, 14,
16–18,20–25] and the references cited therein for more details.

In the present paper, we consider the Riemann problem (1.1) and (1.2) with
initial data

(ρ, v)(t = 0, x) =


(ρ−, v−), x < 0,

(m0δ, v0), x = 0,

(ρ+, v+), x > 0,

(1.7)

where δ is the standard Dirac delta function, and m0, v0, ρ± and v± are arbitrary
constants. Because the delta shocks appear in Riemann solutions of (1.1) and
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(1.2), it is natural to consider system (1.1) and (1.2) with initial data (1.7) which
contains Dirac delta functions. This kind of Riemann problem, which is also called
the Randon measure initial data problem, was studied in [12, 13, 21, 23, 25] for the
zero-pressure flow in gas dynamics and other related equations.

In our paper, we will solve the Riemann problem (1.1), (1.2) and (1.7). Under
the generalized Rankine-Hugoniot conditions and suitable entropy condition, we
constructively obtain the global existence and uniqueness of generalized solutions
including delta shocks that explicitly exhibit four kinds of different structure. How-
ever, much more different from [12, 23, 25], the δ-entropy condition is not enough
to guarantee the uniqueness of generalized solutions. As in [21], we construct our
solution on the basis of the stability theory of generalized solutions. Especially,
when m0 = 0, v0 = 0, our results are consistent with those in [6].

The paper is organized as follows. In Section 2, we first present some preliminary
knowledge about system (1.1) and (1.2); then display the Riemann solution of (1.1)
and (1.2) with constant initial data. In Section 3, we construct the Riemann solution
of (1.1) and (1.2) with delta initial data case by case.

2. Riemann problem with constant initial data

In this section, we briefly review the Riemann solution of (1.1) and (1.2) with initial
data

(ρ, v)(0, x) = (ρ±, v±), ±x > 0, (2.1)

which is in physically relevant region

V = {(ρ, v) : ρ >
1

c
, |v| < c}, (2.2)

where ρ± > 0, the detailed study of which can be found in [6]. For more details
about the study of the Riemann solution of (1.1) can be found in [4, 19].

The relativistic Euler equations for Chaplygin pressure (1.1) and (1.2) have two
eigenvalues

λ1 =
c2(v −

√
p′(ρ))

c2 − v
√
p′(ρ)

, λ2 =
c2(v +

√
p′(ρ))

c2 + v
√
p′(ρ)

,

with corresponding right eigenvectors

rj(v)//

(
(−1)j

c2 − v2
,

√
p′(ρ)

ρc2 + p

)T
, j = 1, 2.

By a straightforward calculation, we obtain 5λi · −→ri = 0(i = 1, 2), which means
system (1.1) and (1.2) is strictly hyperbolic and full linear degenerate.

For convenience in the next, we note

λ1(ρ−, v−) =
c2(v− − 1

ρ−
)

c2 − v−
ρ−

, λ2(ρ+, v+) =
c2(v+ + 1

ρ+
)

c2 + v+
ρ+

.

As usual, we seek the self-similar solution,

(ρ, v)(t, x) = (ρ, v)(ξ), ξ =
x

t
.
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Then the Riemann problem (1.1), (1.2) and (2.1) can be reduced to
−ξ
(

(− 1
ρ + ρc2) v2

c2(c2−v2) + ρ

)
ξ

+

(
(− 1

ρ + ρc2) v
c2−v2

)
ξ

= 0,

−ξ
(

(− 1
ρ + ρc2) v

c2−v2

)
ξ

+

(
(− 1

ρ + ρc2) v2

c2−v2 −
1
ρ

)
ξ

= 0,
(2.4)

with (ρ, v)(±∞) = (ρ±, v±).
For any smooth solution, system (2.4) can be written as

(
1
ρ2

+c2
)
c2v−ξ

(
v2

ρ2
+c4
)

c2(c2−v2)

(
− 1
ρ+ρc

2
)
(c2+v2−2vξ)

(c2−v2)2(
1
ρ2

+v2
)
c2−ξv

(
1
ρ2

+c2
)

c2−v2

(
− 1
ρ+ρc

2
)
(2vc2−ξc2−ξv2)

(c2−v2)2


ρξ

vξ

 = 0, (2.5)

which provides either general solutions (constant states)

(ρ, v)(ξ) = constant, (ρ >
1

c
)

or singular solutions

ξ = λ1 = λ1(ρ−, v−), ξ = λ2 = λ2(ρ−, v−). (2.6)

For a bounded discontinuity at ξ = σ, the Rankine-Hugoniot conditions holds
−σ
[(

(− 1
ρ + ρc2) v2

c2(c2−v2) + ρ
)]

+

[(
− 1

ρ + ρc2
)

v
c2−v2

]
= 0,

−σ
[(
− 1

ρ + ρc2
)

v
c2−v2

]
+

[(
− 1

ρ + ρc2
)

v2

c2−v2 −
1
ρ

]
= 0,

(2.7)

where [ρ] = ρ− ρ−, and σ is the velocity of the discontinuity. By solving (2.7), we
have

σ = λ1 = λ1(ρ−, v−), σ = λ2 = λ2(ρ−, v−). (2.8)

From (2.6) and (2.8), we find that the rarefaction waves and the shock waves are
coincident in the phase plane, which correspond to contact discontinuities:

J1 : ξ =
c2(v − 1

ρ )

c2 − v
ρ

=
c2(v− − 1

ρ−
)

c2 − v−
ρ−

, (2.9)

J2 : ξ =
c2(v + 1

ρ )

c2 + v
ρ

=
c2(v− + 1

ρ−
)

c2 + v−
ρ−

. (2.10)

In the phase plane, through the point (ρ−, v−), we draw a branch of curve (2.9)
for ρ > 1

c , which has the asymptotic line v = λ1(ρ−, v−), denote by J1. Through the
point (ρ−, v−), we draw a branch of curve (2.10) for ρ > 1

c , which has the asymptotic

line v = λ2(ρ−, v−), denote by J2. Through the point

(
ρ−,

ρ−v−c
2−2c2+ v−

ρ−
ρ−c2−2v−+ 1

ρ−

)
, we

draw the contact discontinuity curve (2.10). Now, the phase is divided into five
regions denoted by I, II, III, IV, and V.
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For any given right state (ρ+, v+), we can construct Riemann solutions of (1.1)
and (2.1). when (ρ+, v+) ∈ I ∪ II ∪ III ∪ IV , the Riemann solution contains a 1-
contact discontinuity, a 2-contact discontinuity, a nonvacuum intermediate constant
state (ρ∗, v∗), where 

c2(v∗+
1
ρ∗ )

c2+ v∗
ρ∗

=
c2(v++ 1

ρ+
)

c2+
v+
ρ+

,

c2(v∗− 1
ρ∗ )

c2− v∗ρ∗
=

c2(v−− 1
ρ−

)

c2− v−ρ−
,

(2.11)

when (ρ+, v+) ∈ V, i.e, λ1(ρ−, v−) > λ2(ρ+, v+), the characteristics originating from
the origin Ω = {(x, t) : λ2(ρ+, v+) < x

t < λ1(ρ−, v−)} will overlap. So, singularity
must happen in Ω. It is easy to know that the singularity is impossible to be a jump
with finite amplitude because the Rankine-Hugoniot condition is not satisfied on
the bounded jump. In other words, there is no solution which is piecewise smooth
and bounded. Motivated by [18], we seek solutions with delta distribution at the
jump. In fact, the appearance of delta shock wave is due to the overlap of linear
degenerate characteristic lines.

For system (1.1) and (1.2), the definition of solution in the sense of distributions
can be given as follows.

Definition 2.1. A pair (ρ, v) constitutes a solution of (1.1) and (1.2) in the sense
of distributions if it satisfies

∫ +∞
0

∫ +∞
−∞

((
(− 1

ρ + ρc2) v2

c2(c2−v2) + ρ
)
ϕt +

(
(− 1

ρ + ρc2) v
c2−v2

)
ϕx

)
dxdt = 0,∫ +∞

0

∫ +∞
−∞

((
(− 1

ρ + ρc2) v
c2−v2

)
ϕt +

(
(− 1

ρ + ρc2) v2

c2−v2 −
1
ρ

)
ϕx

)
dxdt = 0,

(2.12)
for all test functions ϕ ∈ C∞0 (R+ ×R1).

Moreover, we define a two-dimensional weighted delta function in the following
way.

Definition 2.2. A two-dimensional weighted delta function w(s)δL supported on
a smooth curve L = {(t(s), x(s)) : a < s < b} is defined by

〈w(s)δL, ϕ〉 =

∫ b

a

w(s)ϕ(t(s), x(s))ds (2.10)

for all test functions ϕ ∈ C∞0 (R2).

Let us consider a solution of (1.1) and (1.4) of the form

(ρ, v)(t, x) =


(ρ−, v−), x < σt,

(w(t)δ(x− σt), σ), x = σt,

(ρ+, v+), x > σt,

(2.14)

where w(t) and σ are weight and velocity of Dirac delta wave respectively, satisfying
the generalized Rankine-Hugoniot conditions

d
dt

( w(t)c2

c2−v2δ(t)
)

= −vδ(t)
[
(− 1

ρ + ρc2) v2

c2(c2−v2) + ρ] +
[
(− 1

ρ + ρc2) v
c2−v2

]
,

d
dt

(w(t)c2vδ(t)
c2−v2δ(t)

)
= −vδ(t)

[
(− 1

ρ + ρc2) v
c2−v2 ] +

[
(− 1

ρ + ρc2) v2

c2−v2 −
1
ρ

]
,

(2.15)
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where [ρ] = ρ− − ρ+, with initial data

(x,w)(0) = (0, 0). (2.16)

By solving (2.15), we can get

(x,w, vδ)(t) =

{(
G
2F t, F

(
1− ( G

2Fc )
2
)
t, G2F

)
, E = 0,(

F−
√
F 2−EG
E t,

√
F 2 − EG

(
1− (F−

√
F 2−EG
E )2

)
t, F−

√
F 2−EG
E

)
, E 6= 0,

where E =
[
(− 1

ρ+ρc2) v2

c2(c2−v2)+ρ], F =
[
(− 1

ρ+ρc2) v
c2−v2

]
, G =

[
(− 1

ρ+ρc2) v2

c2−v2−
1
ρ

]
.

We also can justify the delta shock wave satisfies the entropy condition:

λ2(ρ+, v+) < σ < λ1(ρ−, v−).

which means that all the characteristics on both sides of the delta shock are incom-
ing.

Thus, we obtain the global solution to the one-dimensional Riemann problem
for the relativistic Chaplygin Euler equations (1.1) and (1.2).

3. Riemann problem with delta initial data

In this section, we construct Riemann solution of system (1.1) and (1.2) with initial
data (1.7). According to the relations among λ1(ρ−, v−), v0 and λ2(ρ+, v+), we
discuss the Riemann problem case by case.

Case 3.1. λ1(ρ−, v−) ≤ v0 ≤ λ2(ρ+, v+).

According to the value of v0, we divide our discussion into the following three
subcases.

Subcase 3.1.1. λ1(ρ−, v−) < v0 < λ2(ρ+, v+).

To construct the solution of (1.1), (1.2) and (1.7), here we first consider the
initial value problem (1.1) and (1.2) with the following initial data:

(ρ, v)(t = 0, x) =


(ρ−, v−), x < −ε,

(m0

2ε , v0), −ε < x < ε,

(ρ+, v+), x > ε,

(3.1)

where ε > 0 is sufficiently small. On the basis of the stability theory of weak
solutions, if we obtain a solution of (1.1), (1.2) and (3.1), then by letting ε→ 0, we
can get a solution of (1.1), (1.2) and (1.7).

Because λ1(ρ−, v−) < v0 < λ2(m0

2ε , v0), λ1(m0

2ε , v0) < v0 < λ2(ρ+, v+), when
t is small, the solution of the initial value problem (1.1), (1.2) and (3.1) can be
expressed as

(ρ−, v−) + Ĵ−1 + (ρ̂1, v̂1) + Ĵ−2 + (
m0

2ε
, v0) + Ĵ+

1 + (ρ̂2, v̂2) + Ĵ+
2 + (ρ+, v+),
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where “+” means “followed by”, Moreover, from (2.11), we have
c2
(
v̂1− 1

ρ̂1

)
c2− v̂1ρ̂1

=
c2
(
v−− 1

ρ−

)
c2− v−ρ−

,

c2
(
v̂1+

1
ρ̂1

)
c2+

v̂1
ρ̂1

=
c2
(
v0+

2ε
m0

)
c2+

2εv0
m0

,

and 
c2
(
v̂2− 1

ρ̂2

)
c2− v̂2ρ̂2

=
c2
(
v0− 2ε

m0

)
c2− 2εv0

m0

,

c2
(
v̂2+

1
ρ̂2

)
c2+

v̂2
ρ̂2

=
c2
(
v++ 1

ρ+

)
c2+

v+
ρ+

,

respectively. The propagation speed of Ĵ+
1 is λ1(m0

2ε , v0), and that of Ĵ−2 is λ2(m0

2ε , v0).

Because λ2(m0

2ε , v0) > v0 > λ1(m0

2ε , v0), the contact discontinuity Ĵ−2 will overtake

the contact discontinuity Ĵ+
1 in a finite time. The intersection point (x0, t0) is

determined by 
x0 + ε =

c2
(
v0+

2ε
m0

)
c2+

2εv0
m0

t0,

x0 − ε =
c2
(
v0− 2ε

m0

)
c2− 2εv0

m0

t0.

A simple calculation leads to

(x0, t0) =

(v0m0

(
c2 − 4ε2

m2
0
)

2(c2 − v20)
,
m0

(
c4 − 4ε2v20

m2
0

)

2c2(c2 − v20)

)
.

It is clear that a new Riemann problem is formed when two elementary waves
intersect at a finite time. At the time t = t0, we again have a Riemann problem
with initial data:

(ρ, v)(x, t0) =

 (ρ̂1, v̂1), x < x0,

(ρ̂2, v̂2), x > x0.
(3.2)

Since λ1(ρ̂1, v̂1) = λ1(ρ−, v−) < λ2(ρ̂2, v̂2) = λ2(ρ+, v+), the Riemann solution con-

tains a 1-contact discontinuity Ĵ1, a 2-contact discontinuity Ĵ2 and an intermediate
state (ρ̂3, v̂3), where 

c2
(
v̂3− 1

ρ̂3

)
c2− v̂3ρ̂3

=
c2
(
v−− 1

ρ−

)
c2− v−ρ−

,

c2
(
v̂3+

1
ρ̂3

)
c2+

v̂3
ρ̂3

=
c2
(
v++ 1

ρ+

)
c2+

v+
ρ+

.

Therefore, when t > t0, the solution of (1.1), (1.2) and (3.1) can be expressed as

(ρ−, v−) + Ĵ−1 + (ρ̂1, v̂1) + Ĵ1 + (ρ̂3, v̂3) + Ĵ2 + (ρ̂2, v̂2) + Ĵ+
2 + (ρ+, v+).

So far, we have completely constructed a solution of (1.1), (1.2) and (3.1). Letting
ε→ 0, we obtain a solution of (1.1), (1.2) and (1.7), and we have

c2
(
v̂1− 1

ρ̂1

)
c2− v̂1ρ̂1

=
c2
(
v−− 1

ρ−

)
c2− v−ρ−

,

c2
(
v̂1+

1
ρ̂1

)
c2+

v̂1
ρ̂1

= v0,
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c2
(
v̂2− 1

ρ̂2

)
c2− v̂2ρ̂2

= v0,

c2
(
v̂2+

1
ρ̂2

)
c2+

v̂2
ρ̂2

=
c2
(
v++ 1

ρ+

)
c2+

v+
ρ+

,
c2
(
v̂3− 1

ρ̂3

)
c2− v̂3ρ̂3

=
c2
(
v−− 1

ρ−

)
c2− v−ρ−

,

c2
(
v̂3+

1
ρ̂3

)
c2+

v̂3
ρ̂3

=
c2
(
v++ 1

ρ+

)
c2+

v+
ρ+

.

(x0, t0) =

(
v0c

2m0

2(c2 − v20)
,

m0c
2

2(c2 − v20)

)
,

and a δ-shock wave δS with

x(t) = v0t, w(t) = m0 −
2c2 − 2v20

c2
t, vδ(t) = v0, for 0 ≤ t ≤ c2m0

2c2 − 2v20
,

where x(t), w(t) and vδ(t) respectively denote the location, weight and propagation
speed of the δ-shock.

It is easy to check that δS satisfies (2.15), where [ρ] = ρ̂1 − ρ̂2, with initial data

(x,w, vδ)(0) = (0,m0, v0).

Subcase 3.1.2. λ1(ρ−, v−) = v0 < λ2(ρ+, v+).

Similar to subcase 3.1.1, we have the Riemann solution of (1.1), (1.2) and (1.7),
where (ρ∗, v∗) is given by 

c2(v∗− 1
ρ∗ )

c2− v∗ρ∗
= v0,

c2(v∗+
1
ρ∗ )

c2+ v∗
ρ∗

=
c2(v++ 1

ρ+
)

c2+
v+
ρ+

,

and the δ-shock wave δS has the following expression:

x(t) = v0t, w(t) = m0, vδ(t) = v0, for t ≥ 0.

Subcase 3.1.3. λ1(ρ−, v−) < v0 = λ2(ρ+, v+).

Similar to subcase 3.1.2, (ρ∗, v∗) is given by
c2(v∗− 1

ρ∗ )

c2− v∗ρ∗
=

c2(v−− 1
ρ−

)

c2− v−ρ−
,

c2(v∗+
1
ρ∗ )

c2+ v∗
ρ∗

= v0,

and the δ-shock wave δS has the following expression:

x(t) = v0t, w(t) = m0, vδ(t) = v0, for t ≥ 0.

Case 3.2. v0 < λ1(ρ−, v−) < λ2(ρ+, v+). (If λ1(ρ−, v−) < λ2(ρ+, v+) < v0, then
the structure of the solution is similar.)

It is seen that the particles x0 < 0 collide with the particles x0 = 0 at the start,
while the particles x0 ≤ 0 never collide with the particles x0 > 0. Thus the solution
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can be expressed as

(ρ, v)(t, x) =



(ρ−, v−), x < x(t),

(w(t)δ(x− x(t)), vδ(t)), x = x(t),

(ρ, v)(t, x), x(t) < x < λ2(ρ+, v+)t,

(ρ+, v+), x > λ2(ρ+, v+)t,

(3.3)

where (ρ, v)(t, x) = (ρ∗, v∗)(t) along the straight line λ2(ρ+, v+)t−x = λ2(ρ+, v+)t−
x(t), for t ≥ 0.

Here, (ρ∗, v∗)(t) is the right state of the δ− shock wave δS difined by


c2
(
v∗(t)− 1

ρ∗(t)

)
c2− v∗(t)

ρ∗(t)

= vδ(t),

c2
(
v∗(t)+

1
ρ∗(t)

)
c2+

v∗(t)
ρ∗(t)

=
c2(v++ 1

ρ+
)

c2+
v+
ρ+

.

(3.4)

and δS satisfies the following generalized Rankine-Hugoniot conditions:


dx(t)
dt = vδ(t),

d
dt

( w(t)c2

c2−v2δ(t)
)

= vδ(t)E − F,
d
dt

(w(t)c2vδ(t)
c2−v2δ(t)

)
= vδ(t)F −G,

(3.5)

where [ρ] = ρ∗(t)− ρ−, with initial data

(x,w, vδ)(0) = (0,m0, v0),

since
c2
(
v∗(t)− 1

ρ∗(t)

)
c2− v∗(t)

ρ∗(t)

= vδ(t), we have

v∗(t)−
c2 − v2∗(t)

c2ρ∗(t)− v∗(t)
= vδ(t). (3.7)

Next, We only need to solve the initial value problem (3.5) and (3.6).

From (3.5)2, (3.7) and (3.4), we have

d
dt

( w(t)c2

c2−v2δ(t)
)

= (v∗−c2ρ∗)(v∗−vδ(t))
c2−v2∗

−
−

v2−
ρ−c2

+ρ−c
2

c2−v2−
vδ(t) +

(
− 1
ρ−

+ρ−c
2
)
v−

c2−v2−

= −1−
−

v2−
ρ−c2

+ρ−c
2

c2−v2−
vδ(t) +

−
v2−
ρ−

+ρ−c
4

c2(c2−v2−)
·
c2(v−− 1

ρ−
)

c2− v−ρ−
+ 1

=
−
v2−
ρ−

+ρ−c
4

c2(c2−v2−)

( c2(v−− 1
ρ−

)

c2− v−ρ−
− vδ(t)

)
.

(3.8)
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From (3.5)3, (3.7) and (3.4), we have

d
dt

(w(t)c2vδ(t)
c2−v2δ(t)

)
=

(
− v∗ρ∗ +c2ρ∗v∗

c2−v2∗
)−

− v−ρ− +c2ρ−v−

c2−v2−

(
vδ(t)−

(
− c2ρ∗ +ρ∗c

2v2∗
c2−v2∗

)−
− c2

ρ−
+ρ−c

2v2−

c2−v2−

)
=

1
ρ∗ (c2−v∗vδt)+c2ρ∗v∗(vδ(t)−v∗)

c2−v2∗
−
− v−ρ− +c2ρ−v−

c2−v2−
vδ(t) +

− c2

ρ−
+ρ−c

2v2−

c2−v2−

=

(
− 1−

− v−ρ− +c2ρ−v−

c2−v2−

)
vδ(t) +

− c2

ρ−
+ρ−c

2v2−

c2−v2−

=
c2(v−+ 1

ρ−
)

c2+
v−
ρ−

·
−
v2−
ρ−

+ρ−c
4

c2(c2−v2−)

(
c2(v−− 1

ρ−
)

c2− v−ρ−
− vδ(t)

)
.

(3.9)

Combining (3.8) and (3.9), we have

d

dt

(w(t)c2vδ(t)

c2 − v2δ (t)

)
= λ2(ρ−, v−)

d

dt

( w(t)c2

c2 − v2δ (t)

)
. (3.10)

Integrating (3.10) from 0 to t, we have

w(t)c2

c2−v2δ(t)
(λ2(ρ−, v−)− vδ(t)) = m0c

2

c2−v20
(λ2(ρ−, v−)− v0)

> m0c
2

c2−v20
(λ1(ρ−, v−)− v0) > 0.

(3.11)

Combining (3.11) and (3.8), we obtain

d

dt

( w(t)c2

c2 − v2δ (t)

)
=
A− 2w(t)c2

c2−v2δ(t)
w(t)c2

c2−v2δ(t)

, (3.12)

where

A =
− v

2
−
ρ−

+ ρ−c
4

c2(c2 − v2−)
· m0c

2

c2 − v20
(λ2(ρ−, v−)− v0). (3.13)

In addition, the delta shock wave should satisfy the entropy condition:

v0 < vδ(t) < λ1(ρ−, v−).

This, together with (3.8), (3.11) implies

d

dt

( w(t)c2

c2 − v2δ (t)

)
> 0. (3.14)

and
w(t)c2

c2 − v2δ (t)
> 0 (3.15)

Combining (3.14) and (3.15), we have

0 <
w(t)c2

c2 − v2δ (t)
<
A

2
. (3.16)
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Setting
w(t)c2

c2 − v2δ (t)
= H(t). (3.17)

Solving (3.12) with initial data H(0) = H0 = m0c
2

c2−v20
, we have

H0 −H +
1

2
A(ln(A− 2H0)− ln(A− 2H)) = 2t. (3.18)

Letting f(H) = H0−H+ 1
2A(ln(A−2H0)− ln(A−2H)), then, from (3.16) we have

f ′(H) =
2H

A− 2H
> 0. (3.19)

Thus, from (3.11), there exists a unique inverse function f−1(2t), such that H =
H(t) = f−1(2t). Then from (3.18), we have

w(t) =
f−1(2t)(c2 − v2δ (t))

c2
.

From (3.11), we obtain

vδ(t) = λ2(ρ−, v−)−
m0c

2

c2−v20
(λ2(ρ−, v−)− v0)

f−1(2t)
. (3.20)

Furthermore, we have

x(t) =

∫ t

0

vδ(τ)dτ.

Remark 3.1. From (3.18), we have lim
t→+∞

H(t) = A. Then from (3.20), we have

lim
t→+∞

vδ(t) = λ1(ρ−, v−) < λ2(ρ+, v+). This implies that the delta shock wave δS

will never overtake those 2-contact discontinuities.

Case 3.3. λ2(ρ+, v+) < v0 < λ1(ρ−, v−).
This is a typical case, a delta shock wave emits from the origin. We seek the

solution in the following form

(ρ, v)(t, x) =


(ρ−, v−), x < x(t),

(w(t)δ(x− x(t)), vδ(t)), x = x(t),

(ρ+, v+), x > x(t),

(3.21)

which satisfies (2.15), where [ρ] = ρ− − ρ+, with initial data

(x,w, vδ)(0) = (0,m0, v0). (3.22)

Now, we are going to solve the initial value problem (3.21) and (3.22).
Integrating (2.15) from 0 to t with initial data (3.22), we have

w(t)c2

c2−v2δ(t)
− m0c

2

c2−v20
= −xE + Ft,

w(t)c2vδ(t)
c2−v2δ(t)

− m0c
2v0

c2−v20
= −xF +Gt.

(3.23)
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Cancelling w(t) in (3.23), we have

m0c
2vδ(t)

c2 − v20
− m0c

2v0
c2 − v20

= Exvδ(t)− Fvδ(t)t− Fx+Gt

or
d

dt

{
Ex2

2
−
( m0c

2

c2 − v20
+ Ft

)
x+

1

2
Gt2 +

m0c
2v0

c2 − v20
t

}
= 0. (3.24)

Integrating (3.24) from 0 to t, we obtain

Ex2

2
−
(
m0c

2

c2 − v20
+ Ft

)
x+

1

2
Gt2 +

m0c
2v0

c2 − v20
t = 0. (3.25)

From λ2(ρ+, v+) < v0 < λ1(ρ−, v−), we know that

c2(v+ − 1
ρ+

)

c2 − v+
ρ+

<
c2(v+ + 1

ρ+
)

c2 + v+
ρ+

< v0 <
c2(v− − 1

ρ−
)

c2 − v−
ρ−

<
c2(v− + 1

ρ−
)

c2 + v−
ρ−

.

So one can get that

A1 := −c2v+ρ+ρ− + v+ρ+v− + c2ρ− − v− + c2v−ρ+ρ− − v+v−ρ− − c2ρ+ + v+ > 0,

A2 := −c2v+ρ+ρ− − v+ρ+v− − c2ρ− − v− + c2v−ρ+ρ− + v+v−ρ− + c2ρ+ + v+ > 0,

A3 := −c2v+ρ+ρ− + v+ρ+v− − c2ρ− + v− + c2v−ρ+ρ− + v+v−ρ− − c2ρ+ − v+ ≥ 0,

Thus,

F 2 − EG =
A1A2

ρ+ρ−(c− v−)(c+ v−)(c− v+)(c+ v+)
> 0. (3.26)

F − v0E =

((− 1
ρ−

+ c2ρ−
)
v−

c2 − v2−
−

(
− 1

ρ+
+ c2ρ+

)
v+

c2 − v2+

)
− v0

((− 1
ρ−

+ c2ρ−
)
v2−

c2(c2 − v2−)
+ ρ− −

(
− 1

ρ+
+ c2ρ+

)
v2+

c2(c2 − v2+)
− ρ+

)

=

v+(c2−v+v0)
ρ+

+ c4ρ+(v0 − v+)

c2(c2 − v2+)
+

(
− 1

ρ−
+ c2ρ−

)
v−

c2 − v2−
−
− v

2
−
ρ−

+ ρ−c
4

c2(c2 − v2−)
v0 > 0.

(3.27)
If E 6= 0, we have

4 =

(
m0c

2

c2 − v20
+ Ft

)2

− 2E

(
1

2
Gt2 +

m0c
2v0

c2 − v20
t

)
=

(
m0c

2

c2 − v20

)2

+
2m0c

2

c2 − v20
(F − v0E) + (F 2 − EG)t2 > 0,

we solve Eq. (3.25) to obtain

x(t) =
Ft+ m0c

2

c2−v20
±
√
4

E
. (3.28)
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From (3.28), we have

vδ(t) =

F ±
√
4
(
m0c

2

c2−v20
(F − v0E) + t(F 2 − EG)

)
E

.

Thus,

lim
t→+∞

vδ(t) =
F ±

√
F 2 − EG
E

.

Substituting (3.28) into (3.23)1, we have

w(t) = ∓c
2 − v2δ (t)

c2

√
4.

In addition, to guarantee uniqueness, the delta shock wave should satisfy the entropy
condition:

λ2(ρ+, v+) < lim
t→∞

vδ(t) < λ1(ρ−, v−).

So, we have

w(t) =
c2 − v2δ (t)

c2

√
4.

Then, we obtain a unique solution
x(t) =

Ft+
m0c

2

c2−v20
−
√
4

E ,

vδ(t) =

F−
√
4

(
m0c

2

c2−v20
(F−v0E)+t(F 2−EG)

)
E ,

w(t) =
c2−v2δ(t)

c2

√
4.

(3.29)

If E = 0, solving (3.25), we have

x(t) =

m0c
2v0

c2−v20
t+ 1

2Gt
2

m0c2

c2−v20
+ Ft

.

Then, we have

w(t) =
c2 − v2δ (t)

c2

(
m0c

2

c2 − v20
+ Ft

)
,

and

vδ(t) =

m2
0c

4v0
(c2−v20)2

+ 1
2FGt

2 + m0c
2

c2−v20
Gt(

m0c2

c2−v20
+ Ft

)2 .

Remark 3.2. It is seen that

lim
t→∞

vδ(t) =

 G
2F , E = 0,

F−
√
F 2−EG
E , E 6= 0.
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So, the delta-shock satisfies the entropy condition

λ2(ρ+, v+) < lim
t→∞

vδ(t) < λ1(ρ−, v−),

which means that all the characteristics on both sides of the delta shock are incom-
ing.

Remark 3.3. If m0 = 0, v0 = 0, then

(x,w, vδ)(t) =


(
G
2F t, F

(
1− ( G

2Fc )
2
)
t, G2F

)
, E = 0,(

1− (F−
√
F 2−EG
E )2

)
t, F−

√
F 2−EG
E

)
, E 6= 0.

This is consistent with the results in Cheng and Yang [6]. It implies that the solution
constructed here is stable under some perturbations.

Case 3.4. v0 < λ2(ρ+, v+) < λ1(ρ−, v−). (If λ2(ρ+, v+) < λ1(ρ−, v−) < v0, then
the structure of the solution is similar.)

Similar to the analysis in Case 3.2, we know that, in this case, when t is small
enough, the solution is the same as that in case 3.2. From (3.15), (3.17) and (3.20),
we have

v′δ(t) =

m0c
2

c2−v20
(λ2(ρ−, v−)− v0)

H2

dH

dt
> 0, for t > 0, (3.30)

which shows that vδ(t) is a strictly monotonic increasing function of t for t ∈

[0,+∞). On the other hand, vδ(0) = v0, lim
t→+∞

vδ(t) =
c2(v−− 1

ρ−
)

c2− v−ρ−
= λ1(ρ−, v−) and

v0 < λ2(ρ+, v+) < λ1(ρ−, v−). Thus we can apply the intermediate value theorem
in mathematical analysis, and conclude that there exists a unique t∗ ∈ [0,+∞) such
that vδ(t

∗) = λ2(ρ+, v+). When 0 ≤ t ≤ t∗, the solution is the same as that in case
3.2, which can be expressed as

(ρ, v)(t, x) =



(ρ−, v−), x < x(t),

(w(t)δ(x− x(t)), vδ(t)), x = x(t),

(ρ, v)(t, x), x(t) < x < λ2(ρ+, v+)t,

(ρ+, v+), x > λ2(ρ+, v+)t,

(3.31)

where x(t), w(t) and vδ(t) are the same as those in case 3.2. When t > t∗, the
delta shock wave will overtake all the 2-contact discontinuities and penetrate them
in finite time. Suppose that the penetration ends at time t = t#.

When t∗ ≤ t < t#, the solution can be written in the following form

(ρ, v)(t, x) =



(ρ−, v−), x < x1(t),

(w1(t)δ(x− x1(t)), v1δ (t)), x = x1(t),

(ρ, v)(t, x), x1(t) < x < λ2(ρ+, v+)t,

(ρ+, v+), x1(t) > λ2(ρ+, v+)t.

(3.32)
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Moreover, for any point (x1(t), t) on the delta shock wave δS1, there exists a unique
point (x(t1), t1) (0 ≤ t1 ≤ t∗) on the delta shock wave δS, such that

λ2(ρ+, v+)t− x1(t) = λ2(ρ+, v+)t1 − x(t1). (3.33)

Let (x,w, vδ)(t
∗) = (x∗, w∗, v∗δ ), then v∗δ = λ2(ρ+, v+), and the δ-shock wave δS1

satisfies the following generalized Rankine-Hugoniot conditions:

dx1(t)
dt = v1δ (t),

d
dt

(
w1(t)c2

c2−
(
v1δ(t)

)2) = v1δ (t)
[
(− 1

ρ + ρc2) v2

c2(c2−v2) + ρ]−
[
(− 1

ρ + ρc2) v
c2−v2

]
,

d
dt

(
w1(t)c2v1δ(t)

c2−
(
v1δ(t)

)2) = v1δ (t)
[
(− 1

ρ + ρc2) v
c2−v2 ]−

[
(− 1

ρ + ρc2) v2

c2−v2 −
1
ρ

]
,

(3.34)

where[ρ] = ρ∗(t1)− ρ−, with initial data

(x1, w1, v1δ )(t∗) = (x∗, w∗, v∗δ ). (3.35)

Here, (ρ∗, v∗)(t1) is the right state of the δ-shock wave δS1 defined by
c2
(
v∗(t1)− 1

ρ∗(t1)

)
c2− v∗(t1)

ρ∗(t1)

= v1δ (t1),

c2
(
v∗(t1)+

1
ρ∗(t1)

)
c2+

v∗(t1)

ρ∗(t1)

=
c2(v++ 1

ρ+
)

c2+
v+
ρ+

.

(3.36)

When t# ≤ t < +∞, the solution can be expressed as

(ρ, v)(t, x) =


(ρ−, v−), x < x2(t),

(w2(t)δ(x− x2(t)), v2δ (t)), x = x2(t),

(ρ+, v+), x > x2(t).

(3.37)

It is easy to know that ρ∗ is a function of t1 . Next, our aim is to express ρ∗ as a
function of t . Integrating (3.8) from 0 to t1, we have

w(t1)c2

c2 − v2δ (t1)
− m0c

2

c2 − v20
=
− v

2
−
ρ−

+ c4ρ−

c2(c2 − v2−)
(λ2(ρ−, v−)t1 − x(t1))− 2t1. (3.38)

From (3.18), we have

w(t1)c2

c2 − v2δ (t1)
− m0c

2

c2 − v20
+

1

2
A

(
ln

(
A− 2w(t1)c2

c2 − v2δ (t1)

)
− ln

(
A− 2m0c

2

c2 − v20

))
= −2t1.

(3.39)

Letting a =
−
v2−
ρ−

+c4ρ−

c2(c2−v2−)
(λ2(ρ−, v−) − λ2(ρ+, v+)), then calculating (3.39)×(a2 −

1)+(3.38), we have

w(t1)c2

c2 − v2δ (t1)
· a
2
− m0c

2

c2 − v20
· a
2

+
1

2
(
a

2
−1)A

(
ln

(
A− 2w(t1)c2

c2 − v2δ (t1)

)
−ln

(
A− 2m0c

2

c2 − v20

))
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=
− v

2
−
ρ−

+ c4ρ−

c2(c2 − v2−)
(λ2(ρ+, v+)t1 − x(t1)). (3.40)

Substituting (3.33) into (3.40), we have

w(t1)c2

c2 − v2δ (t1)
· a
2
− m0c

2

c2 − v20
· a
2

+
1

2
(
a

2
−1)A

(
ln

(
A− 2w(t1)c2

c2 − v2δ (t1)

)
−ln

(
A− 2m0c

2

c2 − v20

))

=
− v

2
−
ρ−

+ c4ρ−

c2(c2 − v2−)
(λ2(ρ+, v+)t− x1(t)). (3.41)

By straightforward calculation, we have

−v
2

ρ + c4ρ

c2(c2 − v2)
·

c4

ρ −
c2v2

ρ

(c2 + v
ρ )(c2 − v

ρ )
= 1. (3.42)

From (3.4), (3.11) and (3.42), we have

w(t1)c
2

c2−v2δ(t1)
=

m0c
2

c2−v20
(λ2(ρ−,v−)−v0)

c2(v−+ 1
ρ−

)

c2+
v−
ρ−

−vδ(t1)
= A

B−

(
c2(v−+ 1

ρ−
)

c2+
v−
ρ−

−
c2(v∗− 1

ρ∗
)

c2− v∗
ρ∗

)
= A

B−

(
c2(v−+ 1

ρ−
)

c2+
v−
ρ−

−
c2(v∗+ 1

ρ∗
)

c2+
v∗
ρ∗

+
2

(
c4
ρ∗

−
c2v2∗
ρ∗

)
(c2+

v∗
ρ∗

)(c2− v∗
ρ∗

)

)
= A

B−

(
c2(v−+ 1

ρ−
)

c2+
v−
ρ−

−
c2(v++ 1

ρ+
)

c2+
v+
ρ+

+ 2
B∗

) ,
(3.43)

where

B =
−v

2

ρ + c4ρ

c2(c2 − v2)
, B− =

− v
2
−
ρ−

+ c4ρ−

c2(c2 − v2−)
, B∗ =

− v
2
∗
ρ∗

+ c4ρ∗

c2(c2 − v2∗)
. (3.44)

Substituting (3.43) into (3.41), we have

F (
1

B∗
) = λ2(ρ+, v+)t− x1(t), (3.45)

where

F (s) = a
2B−
· A
B−(λ2(ρ−,v−)−λ2(ρ+,v+)+2s)

+ 1
2B−

(a2 − 1)A ln
(
A− 2A

B−(λ2(ρ−,v−)−λ2(ρ+,v+)+2s)

)
− m0c

2

B−(c2−v20)
· a2 −

1
2B−

(a2 − 1)A ln
(
A− 2m0c

2

c2−v20

)
.

For s > 0,

F ′(s) = − 4AB−s

y2(s)(y(s)− 2)
< 0, (3.46)

where y(s) = B−(λ2(ρ−, v−)−λ2(ρ+, v+) + 2s), which shows that F (s) is a strictly
monotonic decreasing function of s for s ∈ [0,+∞).



392 M. Huang & Z. Shao

And from (3.45) together with (3.46), we have

1

B∗
= G(λ2(ρ+, v+)t− x1(t)), (3.47)

where G = F−1 and 1
G is integrable.

From (3.34), (3.36), (3.42) and (3.44), we have

d
dt

(
w1c2

c2−(v1δ)2
)

= v1δ

(
− v

2
∗
ρ∗ +c4ρ∗

c2(c2−v2∗)
−
−
v2−
ρ−

+c4ρ−

c2(c2−v2−)

)
−
(
− v∗ρ∗ +c2ρ∗v∗

c2−v2∗
−
− v−ρ− +c2ρ−v−

c2−v2−

)
=
− v

2
∗
ρ∗ +c4ρ∗

c2(c2−v2∗)
(v1δ − λ2(ρ+, v+))−

−
v2−
ρ−

+c4ρ−

c2(c2−v2−)
v1δ +

−
v2−
ρ−

+c4ρ−

c2(c2−v2−)
· λ2(ρ−, v−)

= B∗(v
1
δ − λ2(ρ+, v+))−B−v1δ +B−λ2(ρ−, v−)

(3.48)
and

d
dt

( w1c2v1δ
c2−(v1δ)2

)
= v1δ

(
− v∗ρ∗ +c2ρ∗v∗

c2−v2∗
−
− v−ρ− +c2ρ−v−

c2−v2−

)
−
(
− c2ρ∗ +ρ∗c

2v2∗
c2−v2∗

−
− c2

ρ−
+ρ−c

2v2−

c2−v2−

)
= v1δ

(
− v∗ρ∗ +c2ρ∗v∗

c2−v2∗
−
− v−ρ− +c2ρ−v−

c2−v2−

)
−
(
− v∗ρ∗ +c2ρ∗v∗

c2−v2∗
· c

2(v∗+
1
ρ∗ )

c2+ v∗
ρ∗

− c
2(v∗+

1
ρ∗ )

c2+ v∗
ρ∗
−
− v−ρ− +c2ρ−v−

c2−v2−
·
c2(v−+ 1

ρ−
)

c2+
v−
ρ−

+
c2(v−+ 1

ρ−
)

c2+
v−
ρ−

)
=

(
B∗ ·

c2(v∗+
1
ρ∗ )

c2+ v∗
ρ∗
− 1

)(
v1δ −

c2(v∗+
1
ρ∗ )

c2+ v∗
ρ∗

)
+

c2(v∗+
1
ρ∗ )

c2+ v∗
ρ∗
− v1δ

(
B− ·

c2(v−+ 1
ρ−

)

c2+
v−
ρ−

− 1

)
+

(
B− ·

c2(v−+ 1
ρ−

)

c2+
v−
ρ−

− 1

)
c2(v−+ 1

ρ−
)

c2+
v−
ρ−

−
c2(v−+ 1

ρ−
)

c2+
v−
ρ−

= B∗λ2(ρ+, v+)(v1δ − λ2(ρ+, v+))−B−v1δλ2(ρ−, v−) +B−(λ2(ρ−, v−))2

+2λ2(ρ+, v+)− 2λ2(ρ−, v−).

(3.49)
Substituting (3.47) into (3.48) and (3.49) respectively, and integrating from t∗

to t, we have

w1c2

c2−(v1δ)2
− w∗c2

c2−(v∗δ )2

=
∫ t
t∗

v1δ(τ)−λ2(ρ+,v+)
G(λ2(ρ+,v+)τ−x1(τ))dτ −B−(x1 − x∗) +B−λ2(ρ−, v−)(t− t∗),

(3.50)

and

w1c2v1δ
c2−(v1δ)2

− w∗c2v∗δ
c2−(v∗δ )2

= λ2(ρ+, v+)
∫ t
t∗

v1δ(τ)−λ2(ρ+,v+)
G(λ2(ρ+,v+)τ−x1(τ))dτ −B−λ2(ρ−, v−)(x1 − x∗)

+(2λ2(ρ+, v+)− 2λ2(ρ−, v−) +B−λ
2
2(ρ−, v−))(t− t∗).

(3.51)

Calculating (3.51)-(3.50)×v1δ , and noting the fact that v∗δ = λ2(ρ+, v+), we have

(λ2(ρ+, v+)−v1δ )

∫ t

t∗

v1δ (τ)− λ2(ρ+, v+)

G(λ2(ρ+, v+)τ − x1(τ))
dτ−B−λ2(ρ−, v−)(x1−x∗+v1δ (t−t∗))
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+B−v
1
δ (x1−x∗)+(2λ2(ρ+, v+)−2λ2(ρ−, v−)+B−λ

2
2(ρ−, v−))(t−t∗)− w∗c2

c2 − (v∗δ )2
(v1δ

−λ2(ρ+, v+)) = 0. (3.52)

Integrating (3.52) from t∗ to t, we have∫ t
t∗

(λ2(ρ+, v+)− v1δ (s))
∫ s
t∗

v1δ(τ)−λ2(ρ+,v+)
G(λ2(ρ+,v+)τ−x1(τ))dτds−B−λ2(ρ−, v−)(x1 − x∗)(t− t∗)

+ 1
2B−(x1 − x∗)2 + 1

2 (2λ2(ρ+, v+)− 2λ2(ρ−, v−) +B−λ
2
2(ρ−, v−))(t− t∗)2

− w∗c2

c2−(v∗δ )2
(x1 − x∗ − λ2(ρ+, v+)(t− t∗)) = 0.

(3.53)
Letting Y = λ2(ρ+, v+)τ − x1(τ), Z = λ2(ρ+, v+)s − x1(s), then the first term

on the left-hand side of (3.53) equals to

−
∫ λ2(ρ+,v+)t−x1

λ2(ρ+,v+)t∗−x∗

∫ Z

λ2(ρ+,v+)t∗−x∗

1

G(Y )
dY dZ. (3.54)

So, (3.53) can be written as
H(x1, t) = 0, (3.55)

where

H(x1, t)

=−
∫ λ2(ρ+,v+)t−x1

λ2(ρ+,v+)t∗−x∗

∫ Z

λ2(ρ+,v+)t∗−x∗

1

G(Y )
dY dZ −B−λ2(ρ−, v−)(x1 − x∗)(t− t∗)

+
1

2
B−(x1 − x∗)2 +

1

2
(2λ2(ρ+, v+)− 2λ2(ρ−, v−) +B−λ

2
2(ρ−, v−))(t− t∗)2

− w∗c2

c2 − (v∗δ )2
(x1 − x∗ − λ2(ρ+, v+)(t− t∗)).

When t∗ < t < t#, we have

H|x1=x∗+λ2(ρ+,v+)(t−t∗)

=−B−λ2(ρ−, v−)λ2(ρ+, v+)(t− t∗)2 +
1

2
B−λ

2
2(ρ+, v+)(t− t∗)2

+
1

2
(2λ2(ρ+, v+)− 2λ2(ρ−, v−) +B−λ

2
2(ρ−, v−))(t− t∗)2

=
1

2
B−(λ2(ρ−, v−)− λ2(ρ+, v+))

(
λ2(ρ−, v−)− λ2(ρ+, v+) +

2

B−

)
(t− t∗)2.

From (3.42), we have

H|x1=x∗+λ2(ρ+,v+)(t−t∗)

=
1

2
B−(λ2(ρ−, v−)− λ2(ρ+, v+))(λ1(ρ−, v−)− λ2(ρ+, v+))(t− t∗)2 > 0.

(3.56)

and

H|x1=x∗+λ2(ρ−,v−)(t−t∗)

≤ −B−λ22(ρ−, v−)(t− t∗)2 + 1
2B−λ

2
2(ρ−, v−))(t− t∗)2

+ 1
2 (2λ2(ρ+, v+)− 2λ2(ρ−, v−) +B−λ

2
2(ρ−, v−))(t− t∗)2

− w∗c2

c2−(v∗δ )2
(λ2(ρ−, v−)− λ2(ρ+, v+))(t− t∗)− 2λ2(ρ−, v−) +B−λ

2
2(ρ−, v−))(t− t∗)2



394 M. Huang & Z. Shao

− w∗c2

c2−(v∗δ )2
(λ2(ρ−, v−)− λ2(ρ+, v+))(t− t∗)

= −(λ2(ρ−, v−)− λ2(ρ+, v+))(t− t∗)2 − w∗c2

c2−(v∗δ )2
(λ2(ρ−, v−)− λ2(ρ+, v+))(t− t∗)

< 0.

(3.57)
Moreover, for x∗ + λ2(ρ+, v+)(t− t∗) < x1 < x∗ + λ2(ρ−, v−)(t− t∗), we have

∂H

∂x1
=

∫ λ2(ρ+,v+)t−x1

λ2(ρ+,v+)t∗−x∗

1

G(Y )
dY +B−(x1−x∗−λ2(ρ−, v−)(t−t∗))− w∗c2

c2 − (v∗δ )2
< 0.

(3.58)
On account of (3.56), (3.57) and (3.58), there exists a unique function x1 = x1(t) ∈
(x∗ + λ2(ρ+, v+)(t − t∗), x∗ + λ2(ρ−, v−)(t − t∗)), such that H(x1, t) = 0 for t ∈
(t∗, t#). Futhermore , we have v1δ (t) = dx1(t)

dt . From (3.50), we have

w1(t) =
c2−(v1δ)

2

c2

∫ t
t∗

v1δ(τ)−λ2(ρ+,v+)
G(λ2(ρ+,v+)τ−x1(τ))dτ −

c2−(v1δ)
2

c2 B−(x1 − x∗)

+
c2−(v1δ)

2

c2 B−λ2(ρ−, v−)(t− t∗) +
c2−(v1δ)

2

c2
w∗c2

c2−(v∗δ )2
.

(3.59)

When t# ≤ t < +∞, where t# is determined by x1(t#) = λ2(ρ+, v+)t#, the
solution (3.37) is similar to that in case 3.3, which is determined by the Rankine-
Hugoniot condition (2.15) with initial data

(x2, w2, v2δ )(t#) = (x1(t#), w1(t#), v1δ (t#)).

The details are omitted.
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