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SCHRÖDINGER EQUATION∗

Changfu Liu1,†, Min Chen1, Ping Zhou1

and Longwei Chen2

Abstract In this paper, bi-solitons, breather solution family and rogue waves
for the (2+1)-Dimensional nonlinear Schrödinger equations are obtained by us-
ing Exp-function method. These solutions derived from one unified formula
which is solution of the standard (1+1) dimension nonlinear Schrödinger equa-
tion. Further, based on the solution obtained by other authors, higher-order
rational rogue wave solution are obtained by using the similarity transforma-
tion. These results greatly enriched the diversity of wave structures for the
(2+1)-dimensional nonlinear Schrödinger equations.

Keywords Nonlinear Schrödinger equation, Exp-function method, bi-soliton,
breather solution, rogue wave.

MSC(2010) 35Q55, 35A20, 35A25, 35C08.

1. Introduction

The (2+1)-dimensional nonlinear Schrödinger equations are expressed as

iut = uxy + γ2uv,

vx = 2(|u|2)y,
(1.1)

where γ2 = ±1, u(x, y, t) is a complex function and v(x, y, t) is a real function,
respectively. This system plays important role in nonlinear optical physical field
[8, 19]. Some researchers have investigated equations(1.1), derived their solutions
[21,23].

In recent years, rogue wave phenomenon become a hot topic for many researcher-
s. They found that rogue waves appear not only in oceanic conditions [6, 9, 16, 18]
but also in plasmon [17], optics [5, 22,24,29,30], superfluids [7], Bose-Einstein con-
densates [4, 10] and in the form of capillary waves [20].

Rogue wave structure and behavior, have attracted the attentions of a large
number of scholars. Recently, they have obtained fruitful results associated with

†The corresponding author. Email address:chfuliu@163.com (C. Liu)
1School of Mathematics, Wenshan University, Wenshan, 663000, China
2School of Statistics and Mathematics, Yunnan University of Finance and E-
conomics, Kunming, 650221, China
∗The authors were supported by National Natural Science Founda-
tion of China (11261049) and National Science Foundation of Yunnan
Province(2013FD052).

http://dx.doi.org/10.11948/2016028


368 C. Liu, M. Chen, P. Zhou & L. Chen

the rogue waves [1–7,9, 10, 12–18,20,22, 24–30]. In this work, we continue to inves-
tigate the existence of rogue waves and their structures for the (2+1)-dimensional
nonlinear Schrödinger equations.

2. Exp-function method to construct solutions for
equations(1.1)

Setting z = k1x+ k2y, then equations(1.1) are changed into the following forms

iut = k1k2uzz + γ2uv,

v = 2k2
k1
|u|2.

(2.1)

Therefore, equations(1.1) can be reduced to the standard nonlinear Schrödinger
equation(NLSE) [18]

iut + αuzz + β|u|2u = 0, (2.2)

where α = −k1k2 and β = − 2γ2k2
k1

, k1 and k2 are arbitrary real constants. In
view of the character of its solutions, equation(2.2) is called the“ self-focussing”
(α > 0, β > 0) and “de-focussing” (α > 0, β < 0) NLSE, respectively. Here we use
NLSE+ and NLSE− to denote them.

By using the transformation

u(z, t) = re(ir2βt)(1 + A(z,t)+iB(z,t)
F (z,t) ), (2.3)

equation(2.2) can be transformed into the following trilinear equation

2βr2A(z, t)F (z, t)2 + 2αA(z, t)Fz(z, t)
2 − 2αAz(z, t)Fz(z, t)F (z, t)

+ βr2A(z, t)3 + αAzz(z, t)F (z, t)2 − αA(z, t)Fzz(z, t)F (z, t)

−Bt(z, t)F (z, t)2 +B(z, t)F (z, t)Ft(z, t) + 3βr2A(z, t)2F (z, t)

+ βr2B(z, t)2F (z, t) + βr2A(z, t)B(z, t)2 + i(βr2A(z, t)2B(z, t)

−A(z, t)F (z, t)Ft(z, t)− αB(z, t)Fzz(z, t)F (z, t) + βr2B(z, t)3

+ αBz(z, t)F (z, t)2 +At(z, t)F (z, t)2 + 2αB(z, t)Fz(z, t)
2

+ 2βr2A(z, t)B(z, t)F (z, t)− 2αBz(z, t)Fz(z, t)F (z, t)) = 0, (2.4)

where r is real constant, A(z, t), B(z, t) and F (z, t) are real functions. Separating
the real and imaginary parts, we have

2βr2A(z, t)F (z, t)2 + 2αA(z, t)Fz(z, t)
2 + βr2A(z, t)3

− 2αAz(z, t)Fz(z, t)F (z, t) + αAzz(z, t)F (z, t)2 − αA(z, t)Fzz(z, t)F (z, t)

+B(z, t)F (z, t)Ft(z, t) + 3βr2A(z, t)2F (z, t) + βr2B(z, t)2F (z, t)

−Bt(z, t)F (z, t)2 + βr2A(z, t)B(z, t)2 = 0,

βr2A(z, t)2B(z, t)−A(z, t)F (z, t)Ft(z, t)− αB(z, t)Fzz(z, t)F (z, t)

+ βr2B(z, t)3 + αBz(z, t)F (z, t)2 +At(z, t)F (z, t)2

+ 2αB(z, t)Fz(z, t)
2 + 2βr2A(z, t)B(z, t)F (z, t)− 2αBz(z, t)Fz(z, t)F (z, t) = 0.

(2.5)
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Suppose A(z, t), B(z, t) and F (z, t) are the following exponential functions [11]

A(z, t) = a1e
p(V z+Kt) + a2e

−p(V z+Kt) + a3e
q(Wz+Lt) + a4e

−q(Wz+Lt),

B(z, t) = b1e
p(V z+Kt) + b2e

−p(V z+Kt) + b3e
q(Wz+Lt) + b4e

−q(Wz+Lt),

F (z, t) = c1e
p(V z+Kt) + c2e

−p(V z+Kt) + c3e
q(Wz+Lt) + c4e

−q(Wz+Lt), (2.6)

where ai, bi, ci(i = 1, .., 4), p, q,W, V,K and L are constants to be determined. Sub-
stituting functions(2.6) into equations(2.5) which yields two algebraic equations
with respect to emp(V z+Kt)enq(Wz+Lt)(m,n = −3, .., 3). Equating all coefficients of
emp(V z+Kt)enq(Wz+Lt)(m,n = −3, .., 3) to zero yields a set of algebraic equations
for ai, bi, ci(i = 1, .., 4), p, q,W, V,K and L. Solving them with the aid of Maple, we
can obtain the following results:

a1 = 0, a2 = 0, a3 =
b24√

4c22 − b24
, a4 =

1√
4c22 − b24

b24, b1 = 0, b2 = 0, b3 = −b4,

W = 0, c1 = c2, c3 = − 2c22√
4c22 − b24

, c4 = − 2c22√
4c22 − b24

, L = −βr
2b4

2c22q

√
4c22 − b24,

K = 0, V =
rb4
2pc2

√
−2

β

α
, (2.7)

where c2 and b4 are arbitrary constants.
Substituting (2.7) with (2.6) into (2.3), solution of equation(2.2) is expressed as

u(z, t) = re(ir2βt)(1 +
b24 cosh(

βr2b4

√
4c22−b24

2c22
t)+ib4

√
4c22−b24 sinh(

βr2b4

√
4c22−b24

2c22
t)

c2
√

4c22−b24 cosh(
r

√
−2

β
α
b4

2c2
z)−2c22 cosh(

βr2b4

√
4c22−b24

2c22
t)

). (2.8)

Substituting z = k1x + k2y, α = −k1k2 and β = − 2γ2k2
k1

into solution(2.8), we
obtain solutions of equations(1.1) as follows

u(x, y, t) = re(−i 2r
2k2γ

2

k1
t)

(1 +
b24 cosh(

γ2r2b4k2

√
4c22−b24

k1c
2
2

t)−ib4
√

4c22−b24 sinh(
γ2r2b4k2

√
4c22−b24

k1c
2
2

t)

c2
√

4c22−b24 cosh(

√
−γ2
k21

rb4
c2

(k1x+k2y))−2c22 cosh(
γ2r2b4k2

√
4c22−b24

k1c
2
2

t)

),

v(x, y, t) = 2k2
k1
|u(x, y, t)|2.

(2.9)

Solution(2.9) is a unified formula which can produce a series of breather so-
lutions. Obviously, when b4 = 0, solutions (2.9) become plane-wave solutions of
equations(1.1) which are written as

u(x, y, t) = re(−i 2r
2k2γ

2

k1
t), v(x, y, t) = 2k2

k1
r2. (2.10)

3. Bi-solitons, breather solution family and rogue
waves for equations (1.1)

When suitably selected parameters in solutions (2.9), we can obtain the following
solutions of different structures.
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Case 1 The bi-soliton solution: when 4c22− b24 > 0 and γ2 = −1, solutions (2.9)
are bi-soliton solutions of Eqs.(1.1) which can be re-written as

u(x, y, t) = re(i
2r2k2
k1

t)

(1 +
b24 cosh(

r2b4k2

√
4c22−b24

k1c
2
2

t)+ib4
√

4c22−b24 sinh(
r2b4k2

√
4c22−b24

k1c
2
2

t)

c2
√

4c22−b24 cosh(
rb4
k1c2

(k1x+k2y))−2c22 cosh(
r2b4k2

√
4c22−b24

k1c
2
2

t)

),

v(x, y, t) = 2k2
k1
|u(x, y, t)|2.

(3.1)

Figure 1. The profile of |u(x, y, t)| in (3.1) with k1 = 1, k2 = 2, r = 2, b4 = 2, c2 = 2 and X = x+ 2y.

Case 2 The periodic solution: if γ2 = −1, setting b4 = ib, then solutions(2.9)
become the following periodic solutions

u(x, y, t) = re(i
2r2k2
k1

t)(1−
b2 cos(

r2bk2

√
4c22+b2

k1c
2
2

t)−ib
√

4c22+b2 sin(
r2bk2

√
4c22+b2

k1c
2
2

t)

c2
√

4c22+b2 cos( rb
k1c2

(k1x+k2y))−2c22 cos(
r2bk2

√
4c22+b2

k1c
2
2

t)

),

v(x, y, t) = 2k2
k1
|u(x, y, t)|2.

(3.2)

Case 3 Breather solution family: The Akhmediev breather soliton [1, 3], the
Ma breather soliton [14] and the Peregrine breather soliton [18] have been suggested
as models for a class of freak wave events [12]. Thus, the following breather solitons
are also known as rogue waves.

I. When 4c22−b24 > 0 and γ2 = 1, then solutions(2.9) become the following forms
which are called Akhmediev breather solitons

u(x, y, t)

= re(−i 2r
2k2
k1

t)(1 +
b24 cosh(

r2b4k2

√
4c22−b24

k1c
2
2

t)−ib4
√

4c22−b24 sinh(
r2b4k2

√
4c22−b24

k1c
2
2

t)

c2
√

4c22−b24 cos(
rb4
k1c2

(k1x+k2y))−2c22 cosh(
r2b4k2

√
4c22−b24

k1c
2
2

t)

),

v(x, y, t) = 2k2
k1
|u(x, y, t)|2.

(3.3)

II. When b4 = ib and γ2 = 1, then solutions(2.9) become the following forms
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which are called Ma breather solitons

u(x, y, t) = re(−i 2r
2k2
k1

t)

(1−
b2 cos(

r2bk2

√
4c22+b2

k1c
2
2

t)−ib
√

4c22+b2 sin(
r2bk2

√
4c22+b2

k1c
2
2

t)

c2
√

4c22+b2 cosh( rb
k1c2

(k1x+k2y))−2c22 cos(
r2bk2

√
4c22+b2

k1c
2
2

t)

),

v(x, y, t) = 2k2
k1
|u(x, y, t)|2.

(3.4)

Figure 2. The profile of |u(x, y, t)| in (3.3)
with k1 = 1, k2 = 2, r = 2, b4 = 2, c2 = 2 and
X = x+ 2y.

Figure 3. The profile of |u(x, y, t)| in (3.4)
with k1 = 1, k2 = 2, r = 2, b = 2, c2 = 2 and
X = x+ 2y.

III. The Peregrine breather soliton( rational solution) [23]: when γ2 = 1,
setting c2 > 0 and b4 → 0, solutions(2.9) become Peregrine breather forms which
are written as

u(x, y, t) = re(−i 2r
2k2
k1

t)(1− 4k1(k1−i4r2k2t)
k21+4r2(k1x+k2y)2+16k22r

4t2
),

v(x, y, t) = 2k2
k1
|u(x, y, t)|2.

(3.5)

Figure 4. The profile of |u(x, y, t)| in (3.5)
with k1 = 1, k2 = 2 and X = x+ 2y.

Figure 5. The profile of |u(x, y, t)| in (3.7)
with k1 = 1, k2 = −2 and X = x− 2y.

Case 4 Higher-order rational rogue wave solution: when α = 1
2 and β = 1,

higher-order rational rogue wave solutions of equation(2.2) are given by Akhmediev
[2, 3]. Based on Refs. [2, 3], we obtained higher-order rational rogue wave solutions
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of equation(2.2) as follows:

u(z, t) =

√
1

β
(1− G+ iH

D
)eit, β > 0,

G =
4z4 + 12αz2 + 72α2t2 + 48αt2z2 + 80α2t4 − 3α2

16α2
,

H =
t(4z4 + 8α2t2 + 16αt2z2 + 16α2t4 − 15α2 − 12αz2)

8α2
, (3.6)

D =
8z6 + α(12 + 48t2)z4 + 6α2(4t2 − 3)2z2 + α3(9 + 64t6 + 432t4 + 396t2)

192α3
.

When γ2 = 1, substituting α = −k1k2 > 0, β = − 2k2
k1

> 0 and z = k1x+k2y into
(3.6), we have higher-order rational rogue wave solutions of equations(1.1) which
are written as

u(x, y, t) =

√
2

2

√
−k1

k2
(1− 12

G+ iH

D
)eit,

v(x, y, t) =
2k2

k1
|u(x, y, t)|2, (3.7)

where G = 4(k1x+k2y)4 +12(−k1k2)(1+4t2)(k1x+k2y)2 +(−k1k2)2(80t4 +72t2−
3), H = 8t(k1x+k2y)4+(−k1k2)(32t3−24t)(k1x+k2y)2+2(−k1k2)2t(4t2+5)(4t2−
3), D = (−k1k2)3(9 + 396t2 + 432t4 + 64t6) + 6(−k1k2)2(k1x + k2y)2(4t2 − 3)2 +
12(−k1k2)(k1x+ k2y)4(1 + 4t2) + 8(k1x+ k2y)6, k1 and k2 are arbitrary constants
and satisfy k1k2 < 0.

4. Analysis of interactions

From Figure 1, we find that two solitons moving towards each other, they met
and elastic collision occurred, then separated reverse movement. In the event of
a collision, amplitude increased significantly. Figure 2 and Figure 3 represent two
breather soliton, respectively. One of the solitons produces breather effects on spa-
tial direction. However, another soliton produces breather effects on time direction.

Figure 6 represents a rogue waves which is multiple high-amplitude waves grad-
ually together into a wave, as time increases, the amplitude gradually decreases, the
wavelength becomes larger, eventually becomes a plane wave. Thus, rogue waves
came suddenly and disappeared without a trace.

5. Conclusion

In this paper, the (2+1)-dimensional NLS equations are transformed into the stan-
dard (1+1)-dimension NLS equation by using appropriate transformation. One u-
nified formula solution of the standard (1+1)-dimension NLS equation, which yields
bi-solitons and a series of breather solitons(rogue waves), is obtained based on Exp-
function method. Then, solutions of the (2+1)-dimensional NLS equations, which
contain Akhmediev breather soliton, Ma breather soliton and Peregrine breather
soliton and so on, are represented. At the same time, based on the solutions of the
(1+1)-dimension NLS equation obtained by other authors, higher-order rational
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Figure 6. The profiles of |u(x, y, t)| in (3.7) with k1 = 1, k2 = −2 and t = 0, 0.11, 0.2, 0.5, 2, 3.

rogue wave solutions are obtained for (2+1)-dimensional NLS equations by using
the similarity transformation. Several arbitrary parameters are involved to generate
abundant wave structures which greatly enriched the diversity of wave structures
for the (2+1)-dimensional nonlinear Schrödinger equations.
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