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SOLVING STOCHASTIC CHEMICAL
KINETICS BY METROPOLIS-HASTINGS

SAMPLING
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Abstract This study considers using Metropolis-Hastings algorithm for s-
tochastic simulation of chemical reactions. The proposed method uses SSA
(Stochastic Simulation Algorithm) distribution which is a standard method
for solving well-stirred chemically reacting systems as a desired distribution.
A new numerical solvers based on exponential form of exact and approximate
solutions of CME (Chemical Master Equation) is employed for obtaining tar-
get and proposal distributions in Metropolis-Hastings algorithm to accelerate
the accuracy of the tau-leap method. Samples generated by this technique
have the same distribution as SSA and the histogram of samples show it’s
convergence to SSA.
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1. Introduction

In biological systems, chemical reactions are modeled stochastically. The system’s
state (the number of of molecules of each individual species) is described by prob-
ability densities describing the quantity of molecules of different species at a given
time. The evolution of probabilities through time is described by the chemical
master equation (CME) [6].

The Stochastic Simulation Algorithm (SSA) first introduced by Gillespie [6], is
a Monte Carlo approach to sample from the CME. The accuracy of different ap-
proaches in simulating stochastic chemical reactions is compared to histogram of
samples obtained by SSA. However, SSA has a number of drawbacks such as it simu-
lates one reaction at a time and therefore it is inefficient for most realistic problems.
Alternative approaches have been developed trying to enhance the efficiency of SSA
but most of them suffer from accuracy issues. The explicit tau-leaping method [7]
is able to simulate multiple chemical reactions in a pre-selected time step of length
τ by using Poisson random variables [13]. However, explicit tau-leaping method
is numerically unstable for stiff systems [3]. Different implicit tau-leap approaches
have been proposed to alleviate the stability issue [1, 7, 8, 18]. Sandu [20] consid-
ers an exact exponential solution to the CME, leading to a solution vector that
coincides with the probability of SSA. Several approximation methods to the exac-
t exponential solution as well as approximation to the explicit tau-leap are given
in [16].
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The availability of exact and approximate probability solutions motivates the
use of Markov chain Metropolis algorithm to enhance the accuracy of explicit tau-
leap method when using large time steps. The proposed method relies on explicit
tau-leaping to generate candidate samples. The proposed probability density corre-
sponds to that of tau-leaping [20], and the target probability density is provided by
the CME. During the Markov process the candidate samples are evaluated based
on approximations of target and proposal probability and are either accepted or
rejected. The proposed technique requires the computation of a matrix exponential
during the Markov process. The dimension of matrix grows with increasing number
of species in a reaction system. In order to manage the computational expense of
matrix exponentiation efficient approaches based on Krylov [21] and rational ap-
proximations [15,17] are employed. Further computational savings are obtained by
exponentiating only a sub-matrix that encapsulates the essential information about
the transition of the system from the current to the proposed state.

The paper is organized as follows. Section 2 reviews Monte Carlo approaches,
and Section 3 discusses the application of Metropolis-Hastings algorithm to sam-
ple from the probability distribution generated by CME. Computationally efficient
methods to accelerate exponentiating the matrix are discussed in Section 4. Nu-
merical experiments carried out in Section 5 illustrate the accuracy of the proposed
schemes. Conclusions are drawn in Section 6.

2. Markov Chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms to generate
samples from desired probability distributions. A Markov chain is a discrete time
stochastic process, i.e., a sequence of random variables (states) x0, x1, · · · where the
probability of the next state of system depends only on the current state of the
system and not on previous ones [2].

2.1. Metropolis methods

The Metropolis method is an MCMC process to obtain a sequence of random sam-
ples from a desired probability distribution π(x), x ⊂ X ⊂ Rn, which is usually
complex. A Markov chain with state space X and equilibrium distribution π(x)
is constructed and long runs of the chain are performed [19]. The original MCMC
algorithm was given by Metropolis et al. [14] and was later modified by Hastings [9],
with a focus on statistical problems.

A random walk is performed around the current state of the system xt−1. A pro-
posal distribution g (x∗|xt−1) is used to suggest a candidate x∗ for the next sample
given the previous sample value xt−1. The proposal distribution should be sym-
metric g (xt−1|x∗) = g (x∗|xt−1). The algorithm works best if the proposal density
matches the shape of the target distribution, i.e. g (xt−1|x∗) ≈ π(x). Proposals x∗

are accepted or rejected in a manner that leads system toward the region of higher
target probability π(x) [11]. Specifically, one computes the target density ratio

α =
π (x∗)

π (xt−1)
, (2.1)

and draws a random variable ζ ∼ uniform(0, 1). The proposal is accepted or
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rejected as follows:

xt :=

x∗ if ζ < min (1, α) (proposal accepted),

xt−1 otherwise (proposal rejected).

2.2. Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm allows more freedom in the choice of the pro-
posal distribution by relaxing the symmetry constraint [5]. The acceptance ratio
(2.1) is changed to

α = α1 · α2. (2.2)

Here α1 is the ratio between the target probabilities of the proposal sample x∗ and
of the previous sample xt−1. This can be evaluated by a function f which is an
approximation of π

α1 =
π (x∗)

π (xt−1)
≈ f (x∗)

f (xt−1)
, (2.3)

α2 is the ratio of the proposal densities of x∗ conditioned by xt−1, and of xt−1 con-
ditioned by x∗. This ratio is equal to one if the proposal distribution is symmetric.

α2 =
g (xt−1|x∗)
g (x∗|xt−1)

. (2.4)

Convergence of the Markov chain is guaranteed if the properties of detailed
balance and ergodicity conditions are fulfilled [12]. Detailed balance requires that
the probability of moving from xt−1 is the same as moving from x∗.

π (xt−1) g (xt−1|x∗) = π (x∗) g (x∗|xt−1) .

Ergodicity requires that a chain starting from any state x1 will return to x1 if it
runs long enough. In practice, it is not possible to establish with full certainty that
a chain has converged [12].

3. Metropolis-Hastings for stochastic simulation

Here we discuss the application of the Metropolis-Hastings algorithm to generate
samples from the CME distribution. SSA is currently the standard model for solving
well-stirred chemically reacting systems; however, SSA does one reaction at a time
that making it slow for real problems. On the other hand, alternative techniques
such as explicit and implicit tau-leap methods are faster than SSA but suffer from
low accuracy at larger time steps.

In the proposed approach, explicit tau-leap is employed to generate candidate
samples. The samples are evaluated based on the acceptance ratio of Metropolis-
Hastings algorithm. At the end of algorithm, the samples generated by this tech-
nique have the same distribution as given by CME, and the histogram of samples
converges to the histogram of SSA solutions.
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3.1. Target distribution

The target (exact) distribution P (x, t) of the state of the chemical system is given
by the solution of the CME [6]

∂P (x, t)

∂t
=

M∑
r=1

ar (x− vr)P (x− vr, t)− a0 (x)P (x, t) . (3.1)

Let Qi is the total possible number of molecules of species Si, i = 1, . . . , N . The
total number of all possible states of the system is

Q =

N∏
i=1

(
Qi + 1

)
. (3.2)

CME is a linear ODE on the discrete state space of states RQ

P ′ = A · P , P(t̄) = δI(x̄) , t ≥ t̄ . (3.3)

and has an exact solution:

P (t̄+ τ) = exp (T A) · P (t̄) = exp

(
τ

M∑
r=0

Ar

)
· P (t̄) . (3.4)

As explained in [16,20], the diagonal matrix A0 ∈ RQ×Q and the Toeplitz matrices
A1, · · · , AM ∈ RQ×Q are:

(A0)i,j =

−a0 (xj) if i = j,

0 if i 6= j,
, (Ar)i,j =

ar(xj) if i− j = dr,

0 if i− j 6= dr,
(3.5)

and their sum A ∈ RQ×Q is

A = A0 + · · ·+AM , Ai,j =


− a0(xj) if i = j ,

ar(xj) if i− j = dr, r = 1, · · · ,M ,

0 otherwise .

(3.6)

Here xj denotes the unique state with state space index j = I(xj), where I(x) is
the state-space index of state x = [X1, . . . , XN ]:

I(x) =
(
QN−1 + 1

)
· · ·
(
Q1 + 1

)
·XN + · · ·

+
(
Q2 + 1

) (
Q1 + 1

)
·X3 +

(
Q1 + 1

)
·X2 +X1 + 1.

(3.7)

One firing of reaction Rr changes the state from x to x̄ = x−vr. The corresponding
change in state space index is:

I(x)− I (x− vr) = dr,

dr =
(
QN−1 + 1

)
· · ·
(
Q1 + 1

)
.vNr + · · ·

+
(
Q2 + 1

) (
Q1 + 1

)
.v3
r +

(
Q1 + 1

)
.v2
r + v1

r .

At the current time t̄ the system is in the known state x((̄t)) = x̄ and consequently
the current distribution P (t̄) = δI(x̄) is equal to one at I(x̄) and is zero everywhere
else. The target distribution in our method is the exact solution (3.4)

π = exp

(
τ

M∑
r=0

Ar

)
· δI(x̄) . (3.8)
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3.2. Proposal distribution

In our algorithm the explicit tau-leap method is employed to generate the candidate
samples. Sandu [20] shows that the probability distribution generated by the tau-
leap method is the solution of a linear approximation of the CME

P (t̄+ τ) = exp
(
τ Ā
)
· P (t̄) = exp

(
τ

M∑
r=0

Ār

)
· P (t̄) , (3.9)

where the diagonal matrix Ā0 ∈ RQ×Q and the Toeplitz matrices Ā1, ..., ĀM ∈
RQ×Q are:

(Ā0)i,j =

{
− a0 (x̄) if i = j,

0 if i 6= j,
, (Ār)i,j =

{
ar(x̄) if i− j = dr,

0 if i− j 6= dr,
(3.10)

where the arguments of all propensity functions are the current state x̄ [16]. There-
fore the proposal distribution used in our method is:

g = exp

(
τ

M∑
r=0

Ār

)
· δI(x̄) . (3.11)

3.3. Markov process

The Markov process starts with the values of species at the current time. The
candidate sample is generated by the tau-leap method. Both the candidate sample
and the current sample are evaluated based on the acceptance ratio (2.2). The
target density ratio (2.3) is

α1 =
π (x∗)

π (xt−1)
=

δTI(x∗) · exp
(
τ
∑M
r=0Ar

)
· δI(x̄)

δTI(xt−1) · exp
(
τ
∑M
r=0Ar

)
· δI(x̄)

. (3.12)

For the tau-leap method x∗ is generated independent of xt−1 and vice versa. Hence
the proposal density ratio (2.4) is

α2 =
g (xt−1)

g (x∗)
=
δTI(xt−1) · exp

(
τ
∑M
r=0 Ār

)
· δI(x̄)

δTI(x∗) · exp
(
τ
∑M
r=0 Ār

)
· δI(x̄)

. (3.13)

From (3.12) and (3.13) the acceptance ratio α is:

α =
δTI(x∗) · exp

(
τ
∑M
r=0Ar

)
· δI(x̄)

δTI(xt−1) · exp
(
τ
∑M
r=0Ar

)
· δI(x̄)

·
δTI(xt−1) · exp

(
τ
∑M
r=0 Ār

)
· δI(x̄)

δTI(x∗) · exp
(
τ
∑M
r=0 Ār

)
· δI(x̄)

. (3.14)

In the acceptance/rejection test, samples which have a higher density ratio will be
selected as the next state and samples which have a lower density ratio will be reject-
ed. The samples generated by this approach have approximately the same density
as CME (SSA) even when using a large time step in the proposal (explicit tau-leap).
The only drawback of this method is the cost of performing matrix exponential. In
the following section we discuss several ways to reduce this computational cost.
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4. Matrix exponential

The computation of a large matrix exponential is a problem of general interest, and
a multitude of approaches suited to different situations are available. The most
straightforward, and naive approach is a direct application of the definition of the
matrix exponential

exp(A) =

∞∑
k=0

Ak

k!
. (4.1)

While this approach is guaranteed to converge if sufficiently, possibly very many,
terms are used, there are substantial numerical stability problems in the case where
either the norm or the dimension of A is very large [15,21].

4.1. Rational approximation methods for full matrix exponen-
tial

Several rational approximation methods have been developed to overcome the sta-
bility and speed of convergence problems posed by the direct method. These are
based on standard function approximation methods, in the case of the Pade ap-
proximation [15], or on the approximation of complex contour integrals, in the case
of CRAM [17]. These methods are usually paired with the “scaling and squaring”
process of Higham [10] to further increase the stability of the computation.

4.1.1. Pade approximation

The Pade approximation for exp(A) is computed using the (p, q)-degree rational
function:

Ppq(A) = [Dpq(A)]−1Npq(A),

Npq(A) =

p∑
j=0

(p+ q − j)!p!
(p+ q)!j!(p− j)!

Aj ,

Dpq(A) =

q∑
j=0

(p+ q − j)!q!
(p+ q)!j!(q − j)!

(−A)j

which is obtained by solving the algebraic equation:

∞∑
k=0

Ak

k!
− Npq(A)

Dpq(A)
= O

(
Ap+q+1

)
,

in which Ppq(x) must match the Taylor series expansion up to order p + q [21].
MATLAB’s expm function makes use of thirteenth order Pade approximation with
scaling and squaring [15].

4.1.2. Rational approximations of integral contours

The integral contour approach constructs parabolic and hyperbolic contour inte-
grals on left complex plane and uses quadrature points θk from the contour and
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quadrature weights αk [17] to approximate full matrix exponentiation:

r(z) =

N∑
k=1

αk
z − θk

.

In the case where the spectrum of A is confined to a region near the negative real
axis of the complex plane methods based on the rational approximation of integral
contours are likely to convergence faster than the Pade approximation. In this work
we use the Matlab scripts provided by [17] for both rational approximation methods
and the coefficients θ and α.

4.1.3. Chebyshev Rational Approximation Method (CRAM)

Let πk,k denote the set of rational functions

rk,k(x) =
pk(x)

qk(x)
,

where pk and qk are the polynomials of order k computed such as to optimize the
following error

(pk, qk) = arg inf
rk,k∈πk,k

{
sup
x∈R−

| rk,k(x)− ex |

}
.

The primary difficulty in making use of the CRAM method is the procurement
of suitable coefficients of the polynomials pk and qk. A method for obtaining these
coefficients is given in [4], and the values for k = 14 and k = 16 are provided in [17].

4.2. Krylov based approximation for matrix vector products

For our purposes we do not seek the entire solution of exp(A), in fact we would like
only a single element of the result. Krylov based approximations get us one step
closer to this ideal. Where the rational approximation methods seek to approximate
the entirety of equation (4.1), Krylov based methods seek only an approximation
to the matrix-vector product exp(A)b.

This is done by first computing the m-dimensional Krylov subspace

Km = span
{
b, Ab, . . . , Am−1b

}
,

using the Arnoldi iteration to compute the n×m orthonormal basis matrix Vm and
the m×m upper Hessenberg matrix Hbm with m� n such that

span(Vm) = Km, Hbm = V TAV.

The approximation is constructed as

exp(A)b = VmV
T
m exp(A)VmV

T
m b = ‖b‖Vm exp(Hbm)e1, (4.2)

where e1 is the first canonical basis vector. The small matrix exponential term in
(4.2) can be computed using one of the rational approximation methods with scaling
and squaring extremely cheaply. The EXPOKIT software of Sidje [21] makes use
of these techniques, with some extra consideration for Markovian cases, where the
approximation of w(t) = exp(tA)v is subject to the constraint that the resulting
vector is a probability vector with components in the range of [0, 1] and the sum of
these components is approximately one.
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4.3. Faster approximation techniques for a single element

Since we seek only a single element of the matrix exponential (exp(A))i,j we propose
two techniques to speed up this computation.

4.3.1. A single element Krylov approach

Using equation (4.2) with b = ej leads to

(exp(A))i,j = eTi exp(A) ej = (eTi Vm) (exp(Hbm) e1). (4.3)

The exponential matrix entry is computed for the cost of an m-dimensional Pade
approximation and an m-dimensional dot product since (eTi Vm) can be computed
for “free” by simply reading off the ith row of Vm, and similarly (exp(Hbm)e1) is
just the first column of exp(Hbm). This approach avoids the construction of any
additional n-dimensional vectors or their products.

4.3.2. Exponentiation of a selected sub-matrix

Computing the exponential of a large matrix is expensive. When the number of
species in a reaction system is high, the dimensions of the matrix (3.5) for target
probability as well as dimensions of matrix (3.10) for proposal probability grow
quickly. For the case of n species where each has a maximum Q molecules the
dimension of matrix will be (Q+ 1)

n × (Q+ 1)
n
.

In order to reduce costs we propose to exponentiate a sub-matrix of the full
matrix. The selected rows and columns contain indices of both the current state
of system at tn and candidate state at tn + τ . The motivation comes from the
fact that states which are far from the current and the proposed ones do not im-
pact significantly the acceptance/rejection test of Metropolis-Hastings algorithm
and can be disregarded. Numerical experiments indicate that the error in an ele-
ment (exp(A))i,j computed using a properly sized sub-matrix instead of full matrix
is small.

In order to obtain the proper size of a sub-matrix for each reaction system, we
use specific information from the reaction system such as propensity functions, time
step and maximum number of molecules in the system. Recall the general tau-leap
formula [7].

x (t̄+ τ) = x (t̄) +

M∑
j=1

Vj K (aj (x (t̄)) τ) ,

where K (aj (x (t̄)) τ) is a random number drawn from a Poisson distribution with
parameter aj (x (t̄)) τ and Vj is the j-th column of stoichiometry matrix. The ex-
pected value of the jump in the number of molecules is

E[x (t̄+ τ)− x (t̄)] =

M∑
j=1

Vj aj (x (t0)) τ. (4.4)

Motivated by (4.4) we consider the following initial estimate of the size of the sub-
matrix:

S ∝ ‖V ‖
N

M∑
j=1

aj (x (t0)) τ ∝ ā (x (t0)) τ, (4.5)
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where ā (x (t0)) is the average of propensity functions for all reactions calculated
at the initial values of number of molecules.

We seek to select a range of state indices that covers the current and proposed
states. The sub-matrices are built by selecting only the rows and columns in this
range from (3.5) and (3.10). If the range of indices is small then the exponential
computations are fast. However, if this range does not cover the representative
states (both the current sample and the proposed sample), the probability ratio
of the proposed sample can be far from the target probability, and the proposed
sample is likely to be rejected. Choosing the size of the sub-matrix for maximum
efficiency has to balance the cost of obtaining a sample (smaller is better for the
cost of exponentiation) with the likelihood of accepting samples (larger is better for
accuracy of approximation).

5. Numerical experiments

This section discusses the application of the Metropolis-Hastings algorithm to gener-
ate samples from the SSA distribution for three test systems: Schlogl [3], reversible
isomer [3], and Lotka Volterra reactions [6].

5.1. Schlogl reaction

We first consider the Schlogl reaction system from [3]

B1 + 2 x
c1−−⇀↽−−
c2

3 x,

B2

c3−−⇀↽−−
c4

x,
(5.1)

whose solution has a bi-stable distribution. Let N1, N2 be the numbers of molecules
of species B1 and B2, respectively. The reaction stoichiometry matrix and the
propensity functions are:

V =
[
1 −1 1 −1

]
,

a1(x) = c1
2 N1x(x− 1),

a2(x) = c2
6 N1x(x− 1)(x− 2),

a3(x) = c3N2,

a4(x) = c4x.

The following parameter values (each in appropriate units) are used:

c1 = 3× 10−7, c2 = 10−4, c3 = 10−3,

c4 = 3.5, N1 = 1× 105, N2 = 2× 105,

with final time T = 4, initial conditions x(0) = 250 molecules, and maximum
values of species Q1 = 900 molecules. We consider a time step τ = 0.4 for which
the explicit tau-leap solution has a relatively large error compared to SSA.

The initial guess for the size of sub-matrix given by (4.5) is 250 × 250 and
works well for the model. To accept 1, 000 samples the MCMC process rejects
about ∼ 1, 200 samples when using full matrix (whose size is 901 × 901). While
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Figure 1. Histograms of Schlogl system (5.1) solutions with τ = 0.4 (units), final time T=4 (units),
and 10,000 samples.

the number of rejected using sub-matrix is approximately 1, 300. Decreasing the
size of sub-matrix leads to a larger number of rejected samples. For example using
a sub-matrix of size 100 × 100 results in approximately 2, 500 rejected samples, so
this matrix size is too small. Another metric to assess whether the sub-matrix size
is appropriate is the size of the residual obtained by exponentiating the full matrix
and the sub-matrix. In this simulation the residual is below 10−8 for a sub-matrix
size of 250 × 250. We have observed empirically that when the residual is larger
than 10−2 the sample is likely to be rejected. The moderate number of rejected
samples using the sub-matrix and the small residual indicate that the 250×250 size
yields a good approximation for large matrix exponentiation.

Figure 1(a) illustrates the histogram of Schlogl reaction results obtained by
SSA, explicit tau-leap and Metropolis-Hastings using full matrix size. Figure 1(b)
shows that the results obtained with a sub-matrix of size 250× 250 have no visible
reduction in accuracy. Since all the eigenvalues of the matrix lie very closely to
each other we employ the order ten of rational approximation of integral contours
discussed in Section 4.1.2 which is faster than other techniques for exponentiating
both the full matrix and the sub-matrix. The CPU time for obtaining one sample
using the sub-matrix is 0.32 sec., about half the CPU time required when using the
full matrix (0.76 sec). For comparison the CPU times for obtaining one sample are
0.15 sec. using SSA and 0.02 sec. using tau-leaping.

5.2. Isomer reaction

The reversible isomer reaction system from [3] is given by:

x1

c1−−⇀↽−−
c2

x2 (5.2)

and the stoichiometry matrix and the propensity functions are:

V =

−1 1

1 −1

 , a1(x) = c1x1 ,

a2(x) = c2x2 .

The reaction rate values are c1 = 10, c2 = 10 (units), the time interval is [0, T ] with
T = 10 (time units), the initial conditions are x1(0) = 40, x2(0) = 40 molecules,
and the maximum values of the species are Q1 = 80 and Q2 = 80 molecules.
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Figure 2. Histograms of isomer system (5.2) solutions with τ = 0.05 (units), final time T=1 (units),
and 10,000 samples.

The estimate give by equation (4.5) is 20 and since this reaction system has two
species the initial guess for the size of the sub-matrix is 202 × 202. In order to be
more conservative a sub-matrix of size 500 × 500 is selected. In order to accept
1, 000 samples the Markov process rejects approximately 5, 000 samples when using
the full matrix (of size 6, 561 × 6, 561) , and about 8, 000 samples when using the
sub-matrix. Decreasing the size of sub-matrix leads to many more rejected samples.
Our empirical observations show again that when the residual is larger than 10−2

the sample is likely to be rejected. We conclude that the current sub-matrix provides
a good approximation for large matrix exponentiation.

Figure 2(a) shows the histogram of the isomer reaction solutions obtained by
SSA, explicit tau-leap and by Metropolis-Hastings using the full size matrix (3.5)
and (3.10). Figure 2(b) shows the results using the sub-matrix of size 500 × 500.
There is no visible reduction in accuracy. Since all the eigenvalues of the matrix
lie very closely to each other we employ the order ten of rational approximation of
integral contours discussed in Section 4.1.2 which is faster than other techniques
for exponentiating both the full matrix and the sub-matrix. The CPU times for
obtaining one sample are 20.37 sec. using the sub-matrix and 38.70 sec. using the
full matrix. For comparison obtaining one sample using SSA takes 0.15 sec. and
using tau-leaping takes 0.05 sec.

5.3. Lotka Volterra reaction

The last test case is Lotka Volterra reaction system [6]:

Y + x1
c1−→ 2x1,

x1 + x2
c2−→ 2x2,

x2
c3−→ Y,

x1
c4−→ Y.

(5.3)

The reaction stoichiometry matrix and the propensity functions are:

V =

1 −1 0 −1

0 1 −1 0

 , a1(x) = c1x1Y , a2(x) = c2x2x1,

a3(x) = c3x2 , a4(x) = c4x1.
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Figure 3. Histograms of Lotka-Volterra system (5.3) solutions with τ = 0.01 (units), final time T=1
(units), and 10,000 samples.

The following parameter values are used (in appropriate units):

c1 = 0.0002, c2 = 0.01, c3 = 10, c4 = 10, Y = 10−5,

the final time is T = 1, the initial conditions are x1(0) = 1000, x2(0) = 1000
molecules, and the maximum values of species are Q1 = 2000 and Q2 = 2000
molecules. The resulting full matrix has dimension 20012×20012 and exponentiation
is not feasible without the sub-matrix approximation.

The value predicted by equation (4.5) is 125, and since this reaction system has
two species the initial guess for the size of sub-matrix is 15, 625× 15, 625. This size
does not work well for this system with very large number of molecules and almost
never covers both current and candidate states. We increase the size of sub-matrix
to 500, 000 × 500, 000, a value obtained by trial and error. Figure 3 illustrates
the histogram of Lotka-Volterra solutions obtained by SSA, tau-leap method, and
Metropolis-Hastings using a sub-matrix of size discussed above. The Metropolis-
Hastings sampling is very accurate.

The CPU time of matrix exponentiation using the contour integral method dis-
cussed in Section 4.1.2 is four times faster than using the Krylov method discussed
in Section 4.2. However, the Krylov method gives more accurate and stable results
for large matrices [21]. Using 30 vectors in Krylov method, gives smaller number
of rejected samples during the Markov process than the number of rejected sam-
ples using contour integral method. The CPU time for obtaining one sample using
Metropolis-Hastings is a few hours, in comparison to 1.51 sec. using SSA and 0.21
sec. using tau-leap.

6. Conclusions

This study applies the Metropolis-Hastings algorithm to stochastic simulation of
chemical kinetics. The proposed approach makes use of the CME and the exponen-
tial form of its exact solution as the target probability in the Markov process. The
approximation of the explicit tau-leap method is then employed for the proposal
probability. The samples generated by constructing the Markov process have the
same distribution as SSA even the proposals are obtained using explicit tau-leap
with a large time step. Computing matrix exponentials can become a computa-
tional bottleneck for large systems. Efficient approximation methods are needed.
A practical approach consists of selecting a sub-matrix and exponentiating it using
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fast approaches like Expokit and rational approximation to significantly reduce the
cost of the algorithm. Current work of the authors focuses on developing faster
approximation techniques that compute a single element of the matrix exponential.
While the practical performance of the Metropolis-Hastings stochastic simulation
algorithm is not yet competitive with existing methods, the approach is novel and
opens the door for many future developments.
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