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Abstract In this paper, by applying the Schauder’s fixed point theorem we
prove the existence of increasing and decreasing solutions of the polynomial-
like iterative equation with variable coefficients and further completely inves-
tigate increasing convex (or concave) solutions and decreasing convex (or con-
cave) solutions of this equation. The uniqueness and continuous dependence
of those solutions are also discussed.
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1. Introduction

The polynomial-like iterative equation( [10])

λ1f(x) + λ2f
2(x) + · · ·+ λnf

n(x) = F (x), x ∈ S, (1.1)

where S is a subset of a linear space over R, F : S → S is a given function, λis
(i = 1, ..., n) are real constants, f : S → S is the unknown function and f i is the
ith iterate of f , i.e., f i(x) = f(f i−1(x)) and f0(x) = x for all x ∈ S, is one of
important forms of functional equation ( [1, 7, 17, 22]) since it is the basic form of
iterative functional equation, and the problem of iterative roots and the problem
of invariant curves can be reduced to the kind of equations. For S ⊂ R, many
works (e.g. [6, 9, 11,13,21,23,24]) were contributed to the existence of solutions for
Eq.(1.1). Some efforts were also devoted to Eq.(1.1) in high-dimensional spaces
(e.g. [3, 5, 8, 16,25]). One of generalizations for Eq.(1.1) is the following equation

λ1(x)f(x) + λ2(x)f2(x) + · · ·+ λn(x)fn(x) = F (x), x ∈ S, (1.2)

where λi : S → R (i = 1, 2, ..., n) is a mapping. Eq.(1.2) is called polynomial-like it-
erative equations with variable coefficients, which was investigated in 1-dimensional
space in [14, 19, 26]. More concretely, continuous solutions, differentiable solutions
and analytic solutions for Eq.(1.2) were discussed respectively in [26], [14] and [19].
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Also in 1-dimensional space, the more general functional equation of Eq.(1.2), an
iterative functional series equation with variable coefficients was studied and the
existence and uniqueness of the solution were proved in [12].

In our paper, we consider convex solutions of Eq.(1.2). The study of convex
solutions for the polynomial-like iterative Eq.(1.1) in 1-dimensional space can be
found from [18,20,27] and in high dimensional spaces one can refer to [3,5]. In [27],
convex solutions and concave ones of Eq.(1.1) were discussed under the normaliza-
tion condition:

∑n
j=1 λj = 1 on a compact interval, and continued the work of [27],

increasing convex (or concave) solutions and decreasing convex (or concave) solu-
tions of Eq.(1.1) were completely investigated with no normalization condition and
no requirement of uniform sign of coefficients on a compact interval in [20]. In [18],
nondecreasing convex solutions for Eq.(1.1) on open intervals (possibly unbound-
ed) were discussed. In [3], a partial order was introduced by an order cone and the
monotonicity and convexity depending on this order were considered. The existence
and continuous dependence of increasing convex (concave) solutions for Eq.(1.1) in
the ordered real Banach spaces were proved. In [5], monotone solutions and convex
solutions of the Eq.(1.1) on an open set (possibly unbounded) in RN were discussed.
Furthermore, convexity of multi-valued solutions ( [2]) for Eq.(1.1) and convex so-
lutions for generalized Eq.(1.1)( [4]) were also discussed. Up to now, there are no
further results on convexity of solutions for the polynomial-like iterative equations
with variable coefficients.

In this paper, we discuss convex (or concave) solutions of Eq.(1.2). Using the
idea of [20], we first discuss the monotonicity and convexity of the product of two
functions by divided difference and prove the existence of increasing and decreasing
solutions for this equation. Then we completely investigate increasing convex (or
concave) solutions and decreasing convex (or concave) solutions. The uniqueness
and continuous dependence of those solutions are also discussed.

2. Some Lemmas

In this paper, we discuss Eq.(1.2) on [a, b]. As in [26], we may assume that a =
0, b = 1, and I := [0, 1]. Let C(I) denote the real Banach space consisting of all
continuous maps of I into R with respect to the uniform norm ‖f‖ = maxx∈I |f(x)|.
As in [15], the first-order divided difference of f in C(I) is denoted by

f [x1, x2] :=
f(x2)− f(x1)

x2 − x1

for distinct two points x1, x2 ∈ I, and the second-order divided difference of f is
denoted by

f [x1, x2, x3] :=
f [x2, x3]− f [x1, x2]

x3 − x1

for distinct three points x1, x2, x3 ∈ I. Obviously, f is increasing (resp. decreasing)
if f [x1, x2] ≥ 0 (resp. ≤ 0) and f is convex (resp. concave) if f [x1, x2, x3] ≥ 0 (resp.
≤ 0) for all possible three points x1, x2, x3.
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Lemma 2.1. Let f1, f2 ∈ C(I) and x1, x2, x3 ∈ I with x1 6= x2 6= x3. Then

(f1f2)[x1, x2] = f1(x2)f2[x1, x2] + f2(x1)f1[x1, x2]

= f2(x2)f1[x1, x2] + f1(x1)f2[x1, x2],

(f1f2)[x1, x2, x3] = f2(x3)f1[x1, x2, x3] + f1(x2)f2[x1, x2, x3] + f1[x1, x2]f2[x1, x3].

Proof. For two points x1, x2 ∈ I with x1 6= x2, by definition of divided difference,

(f1f2)[x1, x2] =
(f1f2)(x2)− (f1f2)(x1)

x2 − x1

=
f1(x2)f2(x2)− f1(x1)f2(x1)

x2 − x1

=
f1(x2)(f2(x2)− f2(x1)) + f2(x1)(f1(x2)− f1(x1))

x2 − x1
= f1(x2)f2[x1, x2] + f2(x1)f1[x1, x2].

Similarly,

(f1f2)[x1, x2] = f2(x2)f1[x1, x2] + f1(x1)f2[x1, x2].

For three points x1, x2, x3 ∈ I with x1 6= x2 6= x3,

(f1f2)[x1, x2, x3]

=
(f1f2)[x2, x3]− (f1f2)[x1, x2]

x3 − x1

=
(f2(x3)f1[x2, x3] + f1(x2)f2[x2, x3])− (f1(x2)f2[x1, x2] + f2(x1)f1[x1, x2])

x3 − x1

=
f2(x3)(f1[x2, x3]− f1[x1, x2]) + f2(x3)f1[x1, x2]

x3 − x1

+
f1(x2)(f2[x2, x3]− f2[x1, x2])− f2(x1)f1[x1, x2]

x3 − x1
= f2(x3)f1[x1, x2, x3] + f1(x2)f2[x1, x2, x3] + f1[x1, x2]f2[x1, x3].

The proof is completed.
Let J := [c, d]. Similar to [20], define the following function classes.

C(I, J) : = {f ∈ C(I) : f(I) ⊂ J},
C+(I, J) : = {f ∈ C(I, J) : f(0) = c, f(1) = d},
C−(I, J) : = {f ∈ C(I, J) : f(0) = d, f(1) = c}.

For −∞ ≤ m ≤M ≤ +∞, define

C(I, J ;m,M) := {f ∈ C(I, J) : m ≤ f [x1, x2] ≤M,∀x1 6= x2}.

Moreover, for −∞ ≤ m ≤M ≤ +∞ and −∞ ≤ k ≤ K ≤ +∞, define

C(I, J ;m,M, k,K) := {f ∈ C(I, J ;m,M) : k ≤ f [x1, x2, x3] ≤ K,∀x1 6= x2 6= x3}.
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Let

C+(I, J ;m,M) := C(I, J ;m,M) ∩ C+(I, J),

C−(I, J ;m,M) := C(I, J ;m,M) ∩ C−(I, J),

C+(I, J ;m,M, k,K) := C(I, J ;m,M, k,K) ∩ C+(I, J),

C−(I, J ;m,M, k,K) := C(I, J ;m,M, k,K) ∩ C−(I, J).

As shown in [20], C+(I, I;m,M), C−(I, I;m,M), C+(I, I;m,M, k,K), C−(I, I;m,
M, k,K) are compact convex subsets of C(I).

For any c ∈ R, let c+ := max{c, 0} and c− := max{−c, 0}. Both c+ and c− are
nonnegative. Let J∗ = [−c−, d+].

Lemma 2.2. Suppose that f1 ∈ C(I, J ;m1,M1, k1,K1), f2 ∈ C(I, I;m2,M2, k2,K2).
Then

(i) f1f2 ∈ C(I, J∗;m1 + c+m2 − c−M2,M1 − d−m2 + d+M2, k1 + c+k2 − c−K2 +
m1M2,K1− d−k2 + d+K2 +M1M2) if m1 ≤ 0 ≤M1, 0 ≤ m2 ≤M2, k1 ≤ 0 ≤
K1, 0 ≤ k2 ≤ K2;

(ii) f1f2 ∈ C(I, J∗;m1 + c+m2 − c−M2,M1 − d−m2 + d+M2, k1 + d+k2 − d−K2 +
m1M2,K1 − c−k2 + c+K2 +M1M2) if m1 ≤ 0 ≤M1, 0 ≤ m2 ≤M2, k1 ≤ 0 ≤
K1, k2 ≤ K2 ≤ 0;

(iii) f1f2 ∈ C(I, J∗;m1 + c+m2− c−M2,M1− d−m2 + d+M2, k1 + d+k2− c−K2 +
m1M2,K1 − c−k2 + d+K2 +M1M2) if m1 ≤ 0 ≤M1, 0 ≤ m2 ≤M2, ki ≤ 0 ≤
Ki, i = 1, 2, cd ≥ 0;

(iv) f1f2 ∈ C(I, J∗;m1 + d+m2− d−M2,M1− c−m2 + c+M2, k1 + d+k2− c−K2 +
m2M1,K1 − c−k2 + d+K2 +m1m2) if m1 ≤ 0 ≤M1,m2 ≤M2 ≤ 0, ki ≤ 0 ≤
Ki, i = 1, 2, cd ≥ 0.

Proof. The proofs of results (ii)-(iv) are similar to (i), so we only prove (i) in
details. It is obviously −c− ≤ f1(x)f2(x) ≤ d+ because c ≤ f1(x) ≤ d, 0 ≤
f2(x) ≤ 1,∀x ∈ I. Hence f1f2 ∈ C(I, J∗). Since c ≤ f1(x) ≤ d,∀x ∈ I and
0 ≤ m2 ≤ f2[x1, x2] ≤M2, we have

cf2[x1, x2] ≤ f1(x2)f2[x1, x2] ≤ df2[x1, x2]. (2.1)

Note that

c+m2 − c−M2 ≤ cf2[x1, x2] ≤ c+M2 − c−m2

and
d+m2 − d−M2 ≤ df2[x1, x2] ≤ d+M2 − d−m2.

By (2.1), we get

c+m2 − c−M2 ≤ f1(x2)f2[x1, x2] ≤ d+M2 − d−m2. (2.2)

Similarly, m1 ≤ f1[x1, x2] ≤M1 and 0 ≤ f2(x) ≤ 1,∀x ∈ I imply that

m1f2(x1) ≤ f2(x1)f1[x1, x2] ≤M1f2(x1).

So
m1 ≤ f2(x1)f1[x1, x2] ≤M1 (2.3)



310 X. Gong & P. Zhang

because m1 ≤ 0 ≤M1. By Lemma 2.1 and summarizing (2.2) and (2.3) we get

m1 + c+m2 − c−M2 ≤ (f1f2)[x1, x2] ≤M1 + d+M2 − d−m2.

Since k1 ≤ f1[x1, x2, x3] ≤ K1 and 0 ≤ f2(x) ≤ 1,∀x ∈ I,

k1f2(x3) ≤ f2(x3)f1[x1, x2, x3] ≤ K1f2(x3). (2.4)

k1 ≤ 0 ≤ K1 implies

k1 ≤ k1f2(x3) ≤ 0, 0 ≤ K1f2(x3) ≤ K1.

Hence, by (2.4),

k1 ≤ f2(x3)f1[x1, x2, x3] ≤ K1. (2.5)

Similarly,

c+k2 − c−K2 ≤ f1(x2)f2[x1, x2, x3] ≤ d+K2 − d−k2 (2.6)

because

c ≤ f1(x) ≤ d, k2 ≤ f2[x1, x2, x3] ≤ K2, 0 ≤ k2 ≤ K2.

Since

m1 ≤ f1[x1, x2] ≤M1,m2 ≤ f2[x1, x2] ≤M2

and 0 ≤ m2 ≤M2, we have

m1f2[x1, x2] ≤ f1[x1, x2]f2[x1, x2] ≤M1f2[x1, x2].

Hence

m1M2 ≤ f1[x1, x2]f2[x1, x2] ≤M1M2 (2.7)

because m1 ≤ 0 ≤ M1. By Lemma 2.1 and summarizing (2.5), (2.6) and (2.7), we
get

k1 + c+k2 − c−K2 +m1M2 ≤ (f1f2)[x1, x2, x3] ≤ K1 − d−k2 + d+K2 +M1M2.

Consequently,

f1f2 ∈C(I, J∗;m1 + c+m2 − c−M2,M1 + d+M2 − d−m2,

k1 + c+k2 − c−K2 +m1M2,K1 − d−k2 + d+K2 +M1M2).

The proof is completed.

Lemma 2.3. ( [20, Lemma 2.2]). Let I and J be compact intervals in R such that
J ⊂ I. Both fj : I → J(j = 1, 2) are homeomorphisms such that |fj [x, y]| ≤ ς for

all distinct x, y ∈ I, where ς > 0 is a constant. Then (i) ‖f i1 − f i2‖ ≤
∑i−1

j=0 ς
j‖f1 −

f2‖,∀i = 1, 2, ..., (ii) ‖f1 − f2‖ ≤ ς‖f−11 − f−12 ‖.

Lemma 2.4. ( [20, Lemma 2.4]). Suppose that fj ∈ C(I, I;mj ,Mj , kj ,Kj), j =
1, 2. Then
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(i) af1 + bf2 ∈ C(I, I; a+m1 − a−M1 + b+m2 − b−M2,−a−m1 + a+M1 − b−m2 +
b+M2, a

+k1−a−K1+b+k2−b−K2,−a−k1+a+K1−b−k2+b+K2) for a, b ∈ R;

(ii) f2 ◦ f1 ∈ C(I, I;m2m1,M2M1,M2k1 + k2M
2
1 ,M2K1 + K2M

2
1 ) if 0 ≤ m1 ≤

M1, 0 ≤ m2 ≤M2, k1 ≤ 0 ≤ K1 and k2 ≤ 0 ≤ K2;

(iii) f2 ◦ f1 ∈ C(I, I;m2m1,M2M1,m2k1 + k2M
2
1 ,M2K1 + K2M

2
1 ) if 0 ≤ m1 ≤

M1, 0 ≤ m2 ≤M2, 0 ≤ k1 ≤ K1 and k2 ≤ 0 ≤ K2;

(iv) f2 ◦ f1 ∈ C(I, I;m2m1,M2M1,M2k1 + k2M
2
1 ,m2K1 + K2M

2
1 ) if 0 ≤ m1 ≤

M1, 0 ≤ m2 ≤M2, k1 ≤ K1 ≤ 0 and k2 ≤ 0 ≤ K2;

(v) f2 ◦ f1 ∈ C(I, I;M2M1,m2m1,m2K1 + k2m
2
1,m2k1 + K2m

2
1) if m1 ≤ M1 ≤

0,m2 ≤M2 ≤ 0, k1 ≤ 0 ≤ K1 and k2 ≤ 0 ≤ K2;

(vi) f2 ◦ f1 ∈ C(I, I;M2m1,m2M1,M2k1 + k2m
2
1,M2K1 + K2m

2
1) if m1 ≤ M1 ≤

0, 0 ≤ m2 ≤M2, k1 ≤ 0 ≤ K1 and k2 ≤ 0 ≤ K2;

(vii) f2 ◦ f1 ∈ C(I, I;M2m1,m2M1,m2k1 + k2m
2
1,M2K1 +K2m

2
1) if m1 ≤ M1 ≤

0, 0 ≤ m2 ≤M2, 0 ≤ k1 ≤ K1 and k2 ≤ 0 ≤ K2;

(viii) f2 ◦ f1 ∈ C(I, I;M2m1,m2M1,M2k1 + k2m
2
1,m2K1 +K2m

2
1) if m1 ≤M1 ≤

0, 0 ≤ m2 ≤M2, k1 ≤ K1 ≤ 0 and k2 ≤ 0 ≤ K2.

Lemma 2.5. ( [20, Lemma 2.5]). Let f ∈ C(I, I;m,M, k,K) and J := f(I). Then

(i) f−1 ∈ C(J, I; 1/M, 1/m,−K/m3,−k/m3) if 0 < m ≤M and k ≤ 0 ≤ K;

(ii) f i ∈ C(I, I;mi,M i, k
∑2(i−1)

j=i−1 M
j ,K

∑2(i−1)
j=i−1 M

j) if 0 ≤ m ≤M and k ≤ 0 ≤
K for i = 1, 2, ....

Lemma 2.6. ( [20, Lemma 2.6]). Let f ∈ C(I, I;m,M, k,K), where m ≤ M ≤
0, k ≤ 0 ≤ K. Then

f2i ∈ C(I, I;M2i,m2i, (Km+ km2)Si−1(m), (km+Km2)Si−1(m)),

f2i+1 ∈ C(I, I;m2i+1,M2i+1,Km3Si−1(m) + kSi(m), km3Si−1(m) +KSi(m))

for all i = 1, 2, ..., where Sl =
∑l

j=0m
2(j+l) for l = 0, 1, 2, ....

3. Increasing and decreasing solutions

Before discussing convexity, we prove the existence of increasing and decreasing
solutions of Eq.(1.2). We need the following hypothesis:

(H1) λi ∈ C(I, Ji, αi, βi), where Ji := [ci, di] and
∑n

i=1 λi(1) = 1, αi ≤ 0 ≤ βi.

Theorem 3.1. Suppose that (H1)holds and F ∈ C+(I, I; 0,M1), where M1 ∈
(0,+∞) is a constant. If

mIM ≥M1 (3.1)

for a constant M ∈ (0,+∞), where

mI := α1 + c+1 − c
−
1 +

n−1∑
i=1

(αi+1 − c−i+1M
i).



312 X. Gong & P. Zhang

Then Eq.(1.2) has a increasing solution f ∈ C+(I, I; 0,M). Additionally, if

n−1∑
i=1

γi+1

i−1∑
j=0

M j < mI , (3.2)

where γi := max{|ci|, |di|}, i = 2, 3, ..., n, then the solution f is unique in C+(I, I; 0,M)
and depends continuously on F .

Proof. Define L : C+(I, I; 0,M)→ C(I) by

Lf(x) = λ1(x)x+ λ2(x)f(x) + · · ·+ λn(x)fn−1(x), f ∈ C+(I, I; 0,M).

By Lemma 2.5 (ii),

0 ≤ f i[x1, x2] ≤M i, i = 1, 2, ..., n− 1.

Hence, by Lemma 2.2 (i),

αi+1 − c−i+1M
i ≤ (λi+1f

i)[x1, x2] ≤ βi+1 + d+i+1M
i, i = 1, 2, ..., n− 1.

Let h(x) = λ1(x)x, x ∈ I. By Lemma 2.2 (i),

α1 + c+1 − c
−
1 ≤ h[x1, x2] ≤ β1 + d+1 − d

−
1 . (3.3)

By (H1) and (3.1), Lf ∈ C(I, I,mI ,MI), where

MI := β1 + d+1 − d
−
1 +

n−1∑
i=1

(βi+1 + d+i+1M
i),

and Lf is an orientation-preserving homeomorphism from I onto I. By Lemma 2.5
(i),

(Lf)−1 ∈ C(I, I;
1

MI
,

1

mI
). (3.4)

Define a mapping T : C+(I, I; 0,M)→ C(I) by

T f(x) = (Lf)−1 ◦ F (x), f ∈ C+(I, I; 0,M). (3.5)

Note that Lf(0) = 0, Lf(1) = 1 by (H1). Hence, by F (0) = 0, F (1) = 1, we get
T f(0) = 0, T f(1) = 1 and T f(I) ⊂ I because T f is increasing. By Lemma 2.4 (ii)
and (3.4) we have

T f ∈ C+(I, I; 0,
M1

mI
),
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which implies that T is self-mapping on C+(I, I; 0,M) by (3.1). For f1, f2 ∈
C+(I, I; 0,M),

‖T f2 − T f1‖ = ‖(Lf2)−1 ◦ F − (Lf1)−1 ◦ F‖

= ‖(Lf2)−1 − (Lf1)−1‖

≤ 1

mI
‖Lf2 − Lf1‖

≤ 1

mI

n−1∑
i=1

γi+1‖f i2 − f i1‖

≤ 1

mI

n−1∑
i=1

γi+1

i−1∑
j=0

M j‖f2 − f1‖

by Lemma 2.3. Hence T is a continuous mapping. C+(I, I; 0,M) is a compact
convex subset of C(I). Schauder’s fixed point theorem guarantees that T has a
fixed point f ∈ C+(I, I; 0,M) which is a solution of equation (1.2). By (3.2),
similar to the proof of Theorem 3.1 in [20], uniqueness and continuous dependence
of the solution can be proved. This completes the proof.

The following is devoted to decreasing solutions. We need the following hy-
potheses:

(H2) λi ∈ C(I, Ji, αi, βi), where Ji := [ci, di], λi(0) = λi(1) = λi and αi ≤ 0 ≤ βi.
(H3) 0 ≤

∑
eveni λi ≤

∑
oddi λi ≤ 1.

(H4) F ∈ C(I, I;−M1, 0) satisfies F (0) =
∑

oddi λi and F (1) =
∑

eveni λi, where
M1 > 0 is a constant.

Theorem 3.2. Suppose that (H2), (H3) and (H4) hold. If

mDM ≥M1 (3.6)

for a constant M ∈ (0,+∞), where

mD := c+1 − c
−
1 +

n∑
i=1

αi −
∑

oddi,6=1

c−i M
i−1 −

∑
eveni

d+i M
i−1.

Then Eq.(1.2) has a decreasing solution f ∈ C−(I, I;−M, 0). Additionally, if

n−1∑
i=1

γi+1

i−1∑
j=0

M j < mD, (3.7)

then the solution f is unique in C−(I, I;−M, 0) and depends continuously on F .

Proof. Define a mapping L : C−(I, I;−M, 0) → C(I) as in Theorem 3.1. By
Lemma 2.6,

0 ≤ f2i[x1, x2] ≤M2i,−M2i+1 ≤ f2i+1[x1, x2] ≤ 0, i = 1, 2, ....

Similar to Theorem 3.1, by Lemma 2.2 (i),

α2i+1 − c−2i+1M
2i ≤ (λ2i+1f

2i)[x1, x2] ≤ β2i+1 + d+2i+1M
2i, i = 1, 2, ...,
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and by Lemma 2.2 (iv),

α2i+2 − d+2i+2M
2i+1 ≤ (λ2i+2f

2i+1)[x1, x2] ≤ β2i+2 + c−2i+2M
2i+1, i = 0, 2, ....

By (3.3), (H2), (H3), (H4) and (3.6) we have Lf ∈ C(I, I1,mD,MD), where

MD := d+1 − d
−
1 +

n∑
i=1

βi +
∑

oddi,6=1

d+i M
i−1 +

∑
eveni

c−i M
i−1,

and Lf is an orientation-preserving homeomorphism from I onto I1 := [F (1), F (0)].
Clearly I1 ⊂ I by (H3). By Lemma 2.5 (i),

(Lf)−1 ∈ C(I1, I;
1

MD
,

1

mD
). (3.8)

Define a mapping T : C−(I, I;−M, 0) → C(I) as in (3.5). Clearly T f(0) =
1, T f(1) = 0. By Lemma 2.4 (vi), (3.8) and F ∈ C(I, I;−M1, 0), we get

T f ∈ C−(I, I;−M1

mD
, 0),

which implies that T is self-mapping on C−(I, I;−M, 0) by (3.6). The proof of
continuity of T is similar to Theorem 3.1. C−(I, I;−M, 0) is a compact convex
subset of C(I). Schauder’s fixed point theorem guarantees that T has a fixed point
f ∈ C−(I, I;−M, 0) which is a solution of equation (1.2). The remaining part of
the proof is the same as the proof of Theorem 3.1. This completes the proof.

4. Convexity of solutions

In this section, we will discuss convexity of increasing solutions and convexity of
decreasing solutions.

4.1. Convexity of increasing solutions

First we give convexity of increasing solutions. We need the following hypothesis:

(H5) λi ∈ C(I, Ji;αi, βi, µi, νi), where Ji := [ci, di] and
∑n

i=1 λi(1) = 1, αi ≤ 0 ≤
βi, µi ≤ 0 ≤ νi.

Theorem 4.1. Suppose that (H5) holds and F ∈ C+(I, I; 0,M1, k1,K1), where
M1 ∈ (0,+∞) is a constant and 0 ≤ k1 ≤ K1. If

mIM ≥M1,
k1
MI
− KIcvM

2
1

m3
I

≥ 0,
K1

mI
− kIcvM

2
1

m3
I

≤ K (4.1)

for constants M,K ∈ (0,+∞), where

kIcv : = µ1 + α1 +

n−1∑
i=1

(µi+1 − c−i+1K

2(i−1)∑
j=i−1

M j + αi+1M
i),

KIcv : = ν1 + β1 +

n−1∑
i=1

(νi+1 + d+i+1K

2(i−1)∑
j=i−1

M j + βi+1M
i).
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Then Eq.(1.2) has a convex solution f ∈ C+(I, I; 0,M, 0,K). Additionally, if (3.2)
is satisfied then Eq.(1.2) has a unique increasing convex solution f ∈ C+(I, I; 0,M,
0,K), which continuously depends on F .

Proof. Define L : C+(I, I; 0,M, 0,K)→ C(I) as in Theorem 3.1. By Lemma 2.5
(ii),

f i ∈ C(I, I; 0,M i, 0,K

2(i−1)∑
j=i−1

M j).

Hence, by Lemma 2.2 (i),

αi+1 − c−i+1M
i ≤ (λi+1f

i)[x1, x2] ≤ βi+1 + d+i+1M
i, (4.2)

and

µi+1 − c−i+1K

2(i−1)∑
j=i−1

M j + αi+1M
i

≤ (λi+1f
i)[x1, x2, x3]

≤ νi+1 + d+i+1K

2(i−1)∑
j=i−1

M j + βi+1M
i,

(4.3)

where i = 1, 2, ..., n− 1. Let h(x) = λ1(x)x, x ∈ I. By Lemma 2.2 (i),

µ1 + α1 ≤ h[x1, x2, x3] ≤ ν1 + β1. (4.4)

By (H5) and the first inequality of (4.1), summarizing (4.2), (4.3), (3.3) and (4.4)
we get Lf ∈ C(I, I,mI ,MI , kIcv,KIcv) and Lf is an orientation-preserving home-
omorphism from I onto I. By Lemma 2.5 (i),

(Lf)−1 ∈ C
(
I, I;

1

MI
,

1

mI
,− KIcv

(mI)3
,− kIcv

(mI)3

)
. (4.5)

Define a mapping T : C+(I, I; 0,M, 0,K) → C(I) as in (3.5). Clearly T f(0) =
0, T f(1) = 1. By Lemma 2.4 (iii) and (4.5) we have

T f ∈ C+

(
I, I; 0,

M1

mI
,
k1
MI
− KIcvM

2
1

m3
I

,
K1

mI
− kIcvM

2
1

m3
I

)
,

which implies that T is self-mapping on C+(I, I; 0,M, 0,K) by (4.1). The remaining
part of the proof is the same as the proofs of Theorem 3.1. We complete the proof.

Concaveness of increasing solutions can be discussed similarly.

Theorem 4.2. Suppose that (H5) holds and F ∈ C+(I, I; 0,M1, k1,K1), where
M1 ∈ (0,+∞) is a constant and k1 ≤ K1 ≤ 0. If

mIM ≥M1,
k1
mI
− KIccM

2
1

m3
I

+K ≥ 0,
K1

MI
− kIccM

2
1

m3
I

≤ 0 (4.6)
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for constants M,K ∈ (0,+∞), where

kIcc : = µ1 + α1 +

n−1∑
i=1

(µi+1 − d+i+1K

2(i−1)∑
j=i−1

M j + αi+1M
i),

KIcc : = ν1 + β1 +

n−1∑
i=1

(νi+1 + c−i+1K

2(i−1)∑
j=i−1

M j + βi+1M
i).

Then Eq.(1.2) has a concave solution f ∈ C+(I, I; 0,M,−K, 0). Additionally, if
(3.2) is satisfied then Eq.(1.2) has a unique increasing concave solution f ∈ C+(I, I; 0,
M,−K, 0), which continuously depends on F .

Example 4.1. Consider the equation(
− 1

40

(
x− 1

2

)2

+ 1

)
f(x) +

1

40

(
x− 1

2

)2

f2(x) = x2, x ∈ I := [0, 1], (4.7)

where

λ1(x) = − 1

40

(
x− 1

2

)2

+ 1, λ2(x) =
1

40

(
x− 1

2

)2

, F (x) = x2.

Obviously, equation (4.7) is the form of Eq.(1.2) and

λ1 ∈ C
(

[0, 1],

[
159

160
, 1

]
,− 1

40
,

1

40
,− 1

40
, 0

)
,

λ2 ∈ C
(

[0, 1],

[
0,

1

160

]
,− 1

40
,

1

40
, 0,

1

40

)
,

F ∈ C+ (I, I, 0, 2, 1, 1) .∑n
i=1 λi(1) := 159/160 + 1/160 = 1, α1 = −1/40 ≤ 0 ≤ β1 = 1/40, α2 = −1/40 ≤

0 ≤ β2 = 1/40, µ1 = −1/40 ≤ ν1 = 0, µ2 = 0 ≤ ν2 = 1/40 imply that H5 is satisfied.
Since

mI := α1 + c1 +

n−1∑
i=1

(αi+1 − c−i+1M
i) =

151

160
,

MI := β1 + d1 +

n−1∑
i=1

(βi+1 + d+i+1M
i) =

21

20
+

1

160
M,

kIcv := µ1 + α1 +

n−1∑
i=1

(µi+1 − c−i+1K

2(i−1)∑
j=i−1

M j + αi+1M
i) = − 1

20
− 1

40
M,

KIcv := ν1 + β1 +

n−1∑
i=1

(νi+1 + d+i+1K

2(i−1)∑
j=i−1

M j + βi+1M
i) =

8 +K + 4M

160
,

by calculation inequalities (4.1) hold when M = 32/15,K = 2, by Theorem 4.1 we
see that Eq. (4.7) has a increasing convex solution f ∈ C+(I, I, 0, 32/15, 0, 2).
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4.2. Convexity of decreasing solutions

Suppose that

(H6) λi ∈ C(I, Ji;αi, βi, µi, νi), where Ji := [ci, di] and λi(0) = λi(1) = λi, cidi ≥
0, αi ≤ 0 ≤ βi, µi ≤ 0 ≤ νi, i = 1, 2, ..., n.

(H7) F ∈ C(I, I;−M1, 0, k1,K1) satisfies F (0) =
∑

oddi λi and F (1) =
∑

eveni λi,
where M1 > 0 is a constant and 0 ≤ k1 ≤ K1.

Theorem 4.3. Suppose that (H3), (H6) and (H7) hold and if

mDM ≥M1,
k1
MD

− KDcvM
2
1

m3
D

≥ 0,
K1

mD
− kDcvM

2
1

m3
D

≤ K (4.8)

for constants M,K ∈ (0,+∞), where

kDcv : = α1 − c−2 K −Mβ2 +

n∑
i=1

µi −
∑

oddi,6=1

(d+i KMS i−3
2

(M) + c−i KM
2S i−3

2
(M)

− αiM
i−1)−

∑
eveni,6=2

(d+i KM
3S i−4

2
(M) + c−i KS i−2

2
(M) + βiM

i−1),

KDcv : = β1 + d+2 K −Mα2 +

n∑
i=1

νi +
∑

oddi,6=1

(c−i KMS i−3
2

(M) + d+i KM
2S i−3

2
(M)

+ βiM
i−1) +

∑
eveni,6=2

(c−i KM
3S i−4

2
(M) + d+i KS i−2

2
(M)− αiM

i−1).

Then Eq.(1.2) has a convex solution f ∈ C−(I, I;−M, 0, 0,K). Additionally, if
(3.7) is satisfied then Eq.(1.2) has a unique decreasing convex solution f ∈ C−(I, I;
−M, 0, 0,K), which continuously depends on F .

Proof. Define L : C−(I, I;−M, 0, 0,K) → C(I) as in Theorem 3.1. By Lemma
2.6, for f ∈ C−(I, I;−M, 0, 0,K) and positive integer i we have

f2i ∈ C(I, I; 0,M2i,−KMSi−1(M),KM2Si−1(M)),

and

f2i+1 ∈ C(I, I;−M2i+1, 0,−KM3Si−1(M),KSi(M)).

Hence, by Lemma 2.2 (iii) and (iv), we have

α2i+1 − c−2i+1M
2i ≤ (λ2i+1f

2i)[x1, x2] ≤ β2i+1 + d+2i+1M
2i,

α2i+2 − d+2i+2M
2i+1 ≤ (λ2i+2f

2i+1)[x1, x2] ≤ β2i+2 + c−2i+2M
2i+1,

α2 − d+2 M ≤ (λ2f)[x1, x2] ≤ β2 + c−2 M,

(4.9)
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and

µ2i+1 − d+2i+1KMSi−1(M)− c−2i+1KM
2Si−1(M) + α2i+1M

2i

≤ (λ2i+1f
2i)[x1, x2, x3] ≤ ν2i+1 + c−2i+1KMSi−1(M) + d+2i+1KM

2Si−1(M)

+ β2i+1M
2i,

µ2i+2 − d+2i+2KM
3Si−1(M)− c−2i+2KSi(M)− β2i+2M

2i+1

≤ (λ2i+2f
2i+1)[x1, x2, x3] ≤ ν2i+2 + c−2i+2KM

3Si−1(M) + d+2i+2KSi(M)

− α2i+2M
2i+1,

µ2 − c−2 K −Mβ2 ≤ (λ2f)[x1, x2, x3] ≤ ν2 + d+2 K − α2M,

(4.10)

where i = 1, 2, .... By (H3),(H6), (H7)and the first inequalities of (4.8), summarizing
(4.9), (4.10), (3.3) and (4.4) we get Lf ∈ C(I, I1,mD,MD, kDcv,KDcv) and Lf is an
orientation-preserving homeomorphism from I onto I1 := [F (1), F (0)]. By Lemma
2.5 (i),

(Lf)−1 ∈ C
(
I1, I;

1

MD
,

1

mD
,− KDcv

(mD)3
,− kDcv

(mD)3

)
. (4.11)

Define a mapping T : C−(I, I;−M, 0, 0,K) → C(I) as in (3.5). Clearly T f(0) =
1, T f(1) = 0. By Lemma 2.4 (vii) and (4.11) we have

T f ∈ C+

(
I, I;−M1

mD
, 0,

k1
MD

− KDcvM
2
1

m3
D

,
K1

mD
− kDcvM

2
1

m3
D

)
,

which implies that T is self-mapping on C−(I, I;−M, 0, 0,K) by (4.8). The remain-
ing part of the proof is the same as the proofs of Theorem 3.1. This completes the
proof.

We similarly give concaveness of decreasing solutions with the hypothesis:

(H8) F ∈ C(I, I;−M1, 0, k1,K1) satisfies F (0) =
∑

oddi λi and F (1) =
∑

eveni λi,
where M1 > 0 is a constant and k1 ≤ K1 ≤ 0.

Theorem 4.4. Suppose that (H3), (H6) and (H8) hold and if

mDM ≥M1,
k1
mD
− KDccM

2
1

m3
D

+K ≥ 0,
K1

MD
− kDccM

2
1

m3
D

≤ 0 (4.12)

for constants M,K ∈ (0,+∞), where

kDcc : = α1 − d+2 K −Mβ2 +

n∑
i=1

µi −
∑

oddi,6=1

(d+i KM
2S i−3

2
(M) + c−i KMS i−3

2
(M)

− αiM
i−1)−

∑
eveni,6=2

(d+i KS i−2
2

(M) + c−i KM
3S i−4

2
(M) + βiM

i−1),

KDcc : = β1 + c−2 K −Mα2 +

n∑
i=1

νi +
∑

oddi,6=1

(c−i KM
2S i−3

2
(M) + d+i KMS i−3

2
(M)

+ βiM
i−1) +

∑
eveni,6=2

(c−i KS i−2
2

+ d+i KM
3S i−4

2
− αiM

i−1).
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Then Eq.(1.2) has a concave solution f ∈ C−(I, I;−M, 0,−K, 0). Additionally,
if (3.7) is satisfied then Eq.(1.2) has a unique decreasing concave solution f ∈
C−(I, I;−M, 0,−K, 0), which continuously depends on F .

Example 4.2. Consider the equation

λ1(x)f(x) + λ2(x)f2(x) = F (x), x ∈ I := [0, 1], (4.13)

where

λ1(x) = − 1

40

(
x− 1

2

)2

+
161

160
,

λ2(x) =
1

40

(
x− 1

2

)2

− 1

160
,

F (x) = −x2 + 1.

Obviously, equation (4.13) is the form of Eq.(1.2) and

λ1 ∈ C
(

[0, 1],

[
1,

161

160

]
,− 1

40
,

1

40
,− 1

40
, 0

)
,

λ2 ∈ C
(

[0, 1],

[
− 1

160
, 0

]
,− 1

40
,

1

40
, 0,

1

40

)
,

F ∈ C+ (I, I,−2, 0,−1,−1) .

0 ≤
∑

eveni λi := λ2 = 0 ≤
∑

oddi
λi := λ1 = 1 ≤ 1 implies that (H3) is satisfied.

c1d1 = 161/160 > 0, c2d2 = 0 ≥ 0, α1 := −1/40 ≤ 0 ≤ β1 := 1/40, α2 := −1/40 ≤
0 ≤ β2 := 1/40, µ1 = −1/40 ≤ ν1 = 0, µ2 = 0 ≤ ν2 = 1/40 imply that (H6) is
satisfied. F (0) = 1 =

∑
oddi λi = λ1 and F (1) = 0 =

∑
eveni λi = λ2 imply that

(H8) is satisfied. Since

mD := c1 +

n∑
i=1

αi −
∑

oddi,6=1

c−i M
i−1 −

∑
eveni

d+i M
i−1 =

19

20
,

MD := d1 +

n∑
i=1

βi +
∑

oddi,6=1

d+i M
i−1 +

∑
eveni

c−i M
i−1 =

167 +M

160
,

kDcc := α1 − d+2 K −Mβ2 +

n∑
i=1

µi −
∑

oddi,6=1

(d+i KM
2S i−3

2
(M) + c−i KMS i−3

2
(M)

− αiM
i−1)−

∑
eveni,6=2

(d+i KS i−2
2

(M) + c−i KM
3S i−4

2
(M) + βiM

i−1)

= − 1

20
− M

40
,

KDcc := β1 + c−2 K −Mα2 +

n∑
i=1

νi +
∑

oddi,6=1

(c−i KM
2S i−3

2
(M) + d+i KMS i−3

2
(M)

+ βiM
i−1) +

∑
eveni,6=2

(c−i KS i−2
2

+ d+i KM
3S i−4

2
− αiM

i−1)

=
1

20
+

K

160
+
M

40
,
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by calculation inequalities (4.12) hold when M = 40/19,K = 2, by Theorem 4.4 we
see that Eq. (4.13) has a decreasing concave solution f ∈ C−(I, I,−M, 0,−K, 0).

We end the paper with remarks that in the special case where all λi(x) are constants,
our theorems imply the results (at the cases a = 0, b = 1) in [20] and it is difficult
to simplify (4.1), (4.6), (4.8) and (4.12) similar to [20].
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