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1. Introduction

Many inequalities have been established for convex functions but the most famous
is the Hermite-Hadamarad inequality, due to its rich geometrical significance and
applications, which is stated in [17] as:
Let f : I ⊂ R→ R be a convex function defined on the interval Iof real numbers and
a, b ∈ I, with a < b. Then f satisfies the following well-known Hermite Hadamard
inequality

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f (x) dx ≤ f(a) + f(b)

2
. (1.1)

In many areas of analysis, applications of Hermite-Hadamard inequality appeared
for different classes of functions with and without weights; see for convex function-
s [3,5,6,15,16,18–20,27]. In recent years, the classical convexity has been generalized
and extended in a diverse manner. One of them is the preinvexity, introduced by
Weir et al. [27]as a significant generalization of convex function. Many researchers
have studied the basic properties of the preinvex function and their role in opti-
mization theory, variational inequalities and equilibrium problems. Let us recall
some definitions and known results concerning invexity and preinvexity.

Definition 1.1 ( [29]). A set K ⊆ Rn is said to be invex with respect to η :
K ×K → Rn, if

x+ tη (y, x) ∈ K, ∀x, y ∈ K, t ∈ [0, 1] . (1.2)

The invex set K is also called a η-connected set.
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Definition 1.2 ( [27]). Let K ⊆ R be an invex set with respect to η : K×K → Rn.
A function f : K → R is said to be preinvex with respect to η, if

f (x+ tη (y, x)) ≤ (1− t) f (x) + tf (y) ,∀x, y ∈ K, t ∈ [0, 1] . (1.3)

The function f is said to be preconcave if and only if −f is preinvex. It is to be
noted that every convex function is preinvex with respect to the map η (x, y) = x−y,
but the converse is not true.

Noor [19], established the following Hermite-Hadamard’s inequality utilizing
preinvex function which follows as:

Theorem 1.1 ( [19]). Let f : [a, a+ η (b, a)]→ (0,∞) be an open preinvex function
on the interval of real numbers K0 (the interior of K) and a, b ∈ K0 with a <
a+ η (b, a) . Then the following inequality holds:

f

(
2a+ η (b, a)

2

)
≤ 1

η (b, a)

a+η(b,a)∫
a

f(x)dx ≤ f(a) + f(b)

2
. (1.4)

In similar manner to Noor methodology, inequalities for differentiable convex
mappings associated with the right-hand side of Hermite-Hadamard’s inequality was
verified by Barani, Ghazanfari and Dragomir, by means of the following illustration:

Theorem 1.2 ( [2]). Let f : [a, a+ η (b, a)]→ (0,∞) be an open preinvex function
on the interval of real numbers K0 (the interior of K) and a, b ∈ K0 with a <
a+ η (b, a) . Then the following inequality holds:∣∣∣∣∣∣∣

f(a) + f(a+ η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫
a

f(x)dx

∣∣∣∣∣∣∣ ≤
η (b, a)

8
{|f ′ (a)|+ |f ′ (b)|} .

(1.5)

Theorem 1.3 ( [2]). Let K ⊆ R be an open invex subset with respect to η : K×K →
R. Suppose that f : K → R is a differentiable function. Assume p ∈ R with p > 1.

If |f ′|
p

(p−1) is preinvex on K, then for every a, b ∈ K with η (b, a) 6= 0 , the following
inequality holds: ∣∣∣∣∣∣∣

f(a) + f(a+ η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫
a

f(x)dx

∣∣∣∣∣∣∣
≤ η (b, a)

2 (1 + p)
1/p

 |f ′ (a)|
p

(p−1)

+ |f ′ (b)|
p

(p−1)

2


p−1
p

. (1.6)

Recently, much attention has been given to theory of convex functions by many
researchers. Consequently the classical concept of convex functions has been ex-
tended and generalized in different directions using various novel ideas, readers are
directed to [8–14,21–24]. In this paper we establish various inequalities for n-times
differentiable mappings that are connected with illustrious Hermite-Hadamard inte-
gral inequality for mapping whose absolute values of derivatives are (α,m)-preinvex
function. The new integral inequalities are then applied to some special means.
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2. Main results

The following essential definitions and lemmas play a key role to establish our main
results:

Definition 2.1 ( [3]). Let K ⊆ R be an invex set with respect to η : K×K → Rn.
Suppose that f : K → R is said to be (α,m)-preinvex with respect to η, if for all
x, y ∈ K, t ∈ [0, 1] and (α,m) ∈ (0, 1]× (0, 1] ,

f (x+ tη (y, x)) ≤ + (1− tα) f (x) +mtαf
( y
m

)
.

The function f is said to be (α,m)-preconcave if and only if −f is (α,m)-preinvex.

Lemma 2.1. Let I ⊆ R be an open invex subset with respect to η : I × I → R+.
Suppose f : I → R is a function such that f (n) exist on I, for n ∈ N, n ≥ 1. If
f (n) is integrable on [a, a+ η (b, a)] , then for every a, b ∈ I with η (b, a) > 0, the
following inequality holds:

− f (a) + f (a+ η (b, a))

2

− 1

η (b, a)

a+η(b,a)∫
a

f (x) dx−
n−1∑
k=2

(−1)
k

(k − 1) (η (b, a))
k

2 (k + 1)!
f (k) (a+ η (b, a))

=
(−1)

n
(η (b, a))

n

2n!

1∫
0

λn−1 (n− 2λ)
(
f (n) (a+ λη (b, a))

)
dλ. (2.1)

Lemma 2.2. Let I ⊆ R be an open invex subset with respect to η : I × I → R+.
Suppose f : I → R is a function such thatf (n) exist on I, for n ∈ N, n ≥ 1. If
f (n) is integrable on [a, a+ η (b, a)] , then for every a, b ∈ I with η (b, a) > 0, the
following inequality holds:

n−1∑
k=0

[
(−1)

k
+ 1
]

(η (b, a))
k

2k+1 (k + 1)!
f (k)

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

a+η(b,a)∫
a

f (x) dx

=
(−1)

n+1
(η (b, a))

n

n!

1∫
0

Pn(λ)
(
f (n) (a+ λη (b, a))

)
dλ, (2.2)

where Pn(λ) =

 λn, λ ∈ [0, 12 ],

(λ− 1)
n
, λ ∈ [ 12 , 1].

Now we are in position to establish our first result for functions whose nth
derivatives in absolute values are (α,m)-preinvex.

Theorem 2.1. Let f be defined as in Lemma 2.1. If
∣∣f (n)∣∣q for q ≥ 1, is (α,m)-

preinvex on I, for n ∈ N with n ≥ 2, then for every a, b ∈ I with η (b, a) > 0 and



296 S. Hussain & S. Qaisar

for some (α,m) ∈ (0, 1]
2
, we have the following inequality∣∣∣∣∣ f(a)+f(a+η(b,a))2 − 1

η(b,a)

a+η(b,a)∫
a

f(x)dx−
n−1∑
k=2

(−1)k(k−1)(η(b,a))k
2(k+1)! f (k) (a+ η (b, a))

∣∣∣∣∣
≤ (η(b,a))n

2n!

(
n−1
n+1

)1−1/q [
U2

∣∣f (n) (a)
∣∣q +mU1

∣∣f (n) ( bm)∣∣q] 1
q

,

(2.3)

where U1 = n(n−1)+α(n−2)
(n+α)(n+α+1) and U2 = nα(n+α)−α(α+1)

(n+1)(n+α)(n+α+1) .

Proof. By using Lemma 2.1 and (α,m)-preinvexity of
∣∣f (n)∣∣, we have∣∣∣∣∣ f(a)+f(a+η(b,a))2 − 1

η(b,a)

a+η(b,a)∫
a

f(x)dx−
n−1∑
k=2

(−1)k(k−1)(η(b,a))k
2(k+1)! f (k)(a+ η(b, a))

∣∣∣∣∣
≤ (η (b, a))

n

2n!

1∫
0

Pn(λ)
∣∣∣f (n) (a+ λη (b, a))

∣∣∣ dλ
=

(η (b, a))
n

2n!

1∫
0

λn−1 (n− 2λ)

{
(1− λα)

∣∣∣f (n) (a)
∣∣∣+mλα

∣∣∣∣f (n)( b

m

)∣∣∣∣} dλ.
By simple calculations, we have

1∫
0

λn+α+1 (n− 2λ) dλ =
n (n− 1) + α (n− 2)

(n+ α) (n+ α+ 1)
, (2.4)

1∫
0

λn−1 (n− 2λ) (1− λα) dλ =
(n+ α+ 1) (nα− α) + 2α

(n+ 1) (n+ α) (n+ α+ 1)
. (2.5)

Combining the above inequalities (2.4), and (2.5), we obtain (2.3). This completes
the proof.

Corollary 2.1. If n = 2, in Theorem 2.1, then we have the following inequality:∣∣∣∣∣∣∣
f (a) + f (a+ η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫
a

f(x)dx

∣∣∣∣∣∣∣
≤ (η (b, a))

n

2

(
1

3

)1−1/q [
2

(α+ 2)(α+ 3

∣∣∣f(′′) (a)
∣∣∣q +

α

3(α+ 2)
m

∣∣∣∣f (n)( b

m

)∣∣∣∣q]
1
q

.

(2.6)

Theorem 2.2. Let f be defined as in Lemma 2.1. If
∣∣f (n)∣∣q, for q ≥ 1 is (α,m)−

preinvex on I, for n ∈ N with n ≥ 2, then for every a, b ∈ I with η (b, a) > 0 and

for some (α,m) ∈ (0, 1]
2
, we have the following inequality:∣∣∣∣∣ f(a)+f(a+η(b,a))2 − 1

η(b,a)

a+η(b,a)∫
a

f(x)dx−
n−1∑
k=2

(−1)k(k−1)(η(b,a))k
2(k+1)! f (k) (a+ η (b, a))

∣∣∣∣∣
≤ (η(b,a))n

2n! (n− 1)
1−1/q

[
U4

∣∣f (n) (a)
∣∣q +mU3

∣∣f (n) ( bm)∣∣q] 1
q

,

(2.7)

where U3 =
(

2
q+1 −

2
q+α+1 − U4

)
and U4 =

(
2

q+α+1 −
2

q+α+2

)
.
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Proof. By using Lemma 2.1 and Hölder’s inequality, we have

∣∣∣∣f (a) + f (a+ η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫
a

f(x)dx

−
n−1∑
k=2

(−1)
k

(k − 1) (η (b, a))
k

2 (k + 1)!
f (k) (a+ η(b, a))

∣∣∣∣
≤ (η (b, a))

n

2n!

 1∫
0

(n− 2λ)

1−1/q

×
1∫

0

λq(n−1) (n− 2λ)

(
(1− λα)

∣∣∣f (n) (a)
∣∣∣q +mλα

∣∣∣∣f (n)( b

m

)∣∣∣∣q) dλ
=

(η (b, a))
n

2n!
(n− 1)

1−1/q
[
U3

∣∣∣f (n) (a)
∣∣∣q +mU4

∣∣∣∣f (n)( b

m

)∣∣∣∣q]
1
q

.

Using the convexity of |f ′|, we have

1∫
0

λn+α+1 (n− 2λ) (1− λα) dλ =

(
n

nq − q + 1
− 2

nq − q + α+ 1
− U4

)
, (2.8)

1∫
0

λq(n−1) (n− 2λ)λαdλ =

(
n

nq − q + α+ 1
− 2

nq − q + α+ 2

)
. (2.9)

Combing the above inequalities (2.8), and (2.9), we obtain (2.7). This completes
the proof.

Corollary 2.2. If n = 2 in Theorem 2.2, we have∣∣∣∣∣∣∣
f (a) + f (a+ η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫
a

f(x)dx

∣∣∣∣∣∣∣
≤ (η (b, a))

2

22−1/q

[
U3 |f ′′ (a)|q +mU4

∣∣∣∣f ′′( b

m

)∣∣∣∣q]
1
q

,

where U3 =
(

2
q+1 −

2
q+α+1 − U4

)
and U4 =

(
2

q+α+1 −
2

q+α+2

)
.

Corollary 2.3. If we take q = 1, α = 1 and m = 1 in Corollary 2.2 we get,∣∣∣∣∣∣∣
f (a) + f (a+ η (b, a))

2
− 1

η (b, a)

a+η(b,a)∫
a

f(x)dx

∣∣∣∣∣∣∣ ≤
(η (b, a))

2

12
[|f ′′ (a)|+ |f ′′ (b)|] .

Theorem 2.3. Let I ⊆ R be an open invex subset with respect to η : I × I → R+

and suppose f : I → R is a function on I,with η (b, a) > 0 and f (n) is integrable on
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[a, a+ η (b, a)], for n ∈ N with n ≥ 2. If
∣∣f (n)∣∣q, for q ≥ 1, is (α,m)−preinvex on

I, for n ∈ N with ≥ 2, the following inequality holds:∣∣∣∣∣∣∣
n−1∑
k=0

[
(−1)

k
+ 1
]

(η (b, a))
k

2k+1 (k + 1)!
f (k)

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

a+η(b,a)∫
a

f (x) dx

∣∣∣∣∣∣∣
≤ (η (b, a))

n

2nn! (np+ 1)

[
α
∣∣f (n) (a)

∣∣q +m
∣∣f (n) ( bm)∣∣q

α+ 1

] 1
q

. (2.10)

Proof. Using Lemma 2.1 and (α,m)-preinvexity of
∣∣f (n)∣∣q ,we have∣∣∣∣∣∣∣

n−1∑
k=0

[
(−1)

k
+ 1
]

(η (b, a))
k

2k+1 (k + 1)!
f (k)

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

a+η(b,a)∫
a

f (x) dx

∣∣∣∣∣∣∣
≤ (η (b, a))

n

n!

1∫
0

|Pn(λ)|
∣∣∣f (n) (a+ λη (b, a))

∣∣∣ dλ
≤ (η (b, a))

n

n!

 1∫
0

|Pn(λ)|p


1
p
 1∫

0

∣∣∣f (n) (a+ λη (b, a))
∣∣∣qdλ


1
q

≤ (η (b, a))
n

n!

 1∫
0

|Pn(λ)|p


1
p
 1∫

0

(1− λα)
∣∣∣f (n) (a)

∣∣∣+m

1∫
0

λα
∣∣∣∣f (n)( b

m

)∣∣∣∣
 dλ.

Using the (α,m)-preinvexity of |fn|, we have

1∫
0

|Pn(λ)|p =

1/2∫
0

λnpdλ+

1∫
1/2

(1− λ)
np
dλ =

1

2np (np+ 1)
, (2.11)

1∫
0

∣∣∣f (n) (a+ λη (b, a))
∣∣∣qdλ ≤ 1∫

0

(1− λα)
∣∣∣f (n) (a)

∣∣∣+m

1∫
0

λα
∣∣∣∣f (n)( b

m

)∣∣∣∣
=
α
∣∣f (n) (a)

∣∣q +m
∣∣f (n) ( bm)∣∣q

α+ 1
. (2.12)

Combing the above inequalities (2.11), and (2.12), we obtain (2.10). This completes
the proof.

Corollary 2.4. If n = 2, α = 1 and m = 1, in Theorem 2.3, then we have the
following inequality: ∣∣∣∣∣∣∣f

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

a+η(b,a)∫
a

f (x) dx

∣∣∣∣∣∣∣
≤ (η (b, a))

2

8 (2p+ 1)

[
|f ′′ (a)|q +m

∣∣f ′′ ( bm)∣∣q
3

] 1
q

. (2.13)
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Theorem 2.4. Let I ⊆ R be an open invex subset with respect to η : I × I → R+.
Suppose f : I → R is a function on I, with η (b, a) > 0 and f (n) is integrable on
[a, a+ η (b, a)], for n ∈ N with n ≥ 1. If

∣∣f (n)∣∣q, for q > 1 is (α,m)-preinvex on I,
for n ∈ N with n ≥ 1, then following inequality holds:∣∣∣∣∣∣∣

n−1∑
k=0

[
(−1)

k
+ 1
]

(η (b, a))
k

2k+1 (k + 1)!
f (k)

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

a+η(b,a)∫
a

f (x) dx

∣∣∣∣∣∣∣
≤ (η (b, a))

n

2nn!

(
1

2np+1 (np+ 1)

)1/p


(
V1
∣∣f (n) (a)

∣∣q +mV2
∣∣f (n) ( bm)∣∣q)1/q

+
(
V3
∣∣f (n) (a)

∣∣q +mV4
∣∣f (n) ( bm)∣∣q)1/q

 ,
(2.14)

where

V1 =
2α (α+ 1)− 1

(α+ 1) 2α+1
, V2 =

1

(α+ 1) 2α+1
,

V3 =
α.2α+1 − 2α (α+ 1) + 1

(α+ 1) 2α+1
, V4 =

(
2α+1 − 1

)
(α+ 1) 2α+1

and 1
p + 1

q = 1.

Proof. Using Power Mean inequality and by Lemma 2.2, we get∣∣∣∣∣∣∣
n−1∑
k=0

[
(−1)

k
+ 1
]

(η (b, a))
k

2k+1 (k + 1)!
f (k)

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

a+η(b,a)∫
a

f (x) dx

∣∣∣∣∣∣∣
≤ (η (b, a))

n

n!

 1/2∫
0

λnpdλ


1/p 1/2∫

0

f (n) |(a+ λη (b, a))|q dλ


1/q

+
(η (b, a))

n

n!

 1∫
1/2

(1− λ)
np
dλ


1/p 1∫

1/2

f (n) |(a+ λη (b, a))|q dλ


1/q

.

Also the (α,m)-preinvexity of
∣∣f (n)∣∣q implies that

1/2∫
0

λnpdλ =

1∫
1/2

(1− λ)
np
dλ =

1

2np (np+ 1)
, (2.15)

1/2∫
0

f (n) |(a+ λη (b, a))|q dλ ≤
1/2∫
0

[
(1− λα)

∣∣∣f (n) (a)
∣∣∣q +mλα

∣∣∣∣f (n)( b

m

)∣∣∣∣q]dλ
= V1

∣∣∣f (n) (a)
∣∣∣q +mV2

∣∣∣∣f (n)( b

m

)∣∣∣∣q ,
(2.16)
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1∫
1/2

f (n) |(a+ λη (b, a))|q dλ ≤
1∫

1/2

[
(1− λα)

∣∣∣f (n) (a)
∣∣∣q +mλα

∣∣∣∣f (n)( b

m

)∣∣∣∣q]dλ
= V3

∣∣∣f (n) (a)
∣∣∣q +mV4

∣∣∣∣f (n)( b

m

)∣∣∣∣q .
(2.17)

Combing the above inequalities (2.15), (2.16), and (2.17), we obtain (2.14). This
completes the proof.

Corollary 2.5. If α = 1, m = 1 and n = 2 in Theorem 2.4, then we have the
following inequality:

∣∣∣∣∣∣∣f
(
a+

1

2
η (b, a)

)
− 1

η (b, a)

a+η(b,a)∫
a

f (x) dx

∣∣∣∣∣∣∣
≤ (η (b, a))

2

8

(
1

22p+1 (2p+ 1)

)1/p
( 38 |f ′′ (a)|q + 1

8 |f
′′ (b)|q

)1/q
+
(
1
8 |f
′′ (a)|q + 3

8 |f
′′ (b)|q

)1/q
 .

Theorem 2.5. Let I ⊆ R be an open invex subset with respect to η : I × I → R+.
Suppose f : I → R is a function on I, with η (b, a) > 0, and f (n) is integrable on
[a, a+ η (b, a)], for n ∈ N with n ≥ 1. If

∣∣f (n)∣∣q for q ≥ 1, is (α,m)−preinvex on
I, for n ∈ N with n ≥ 1, then the following inequality holds:

∣∣∣∣∣∣∣
n−1∑
k=0

[
(−1)

k
+ 1
]

(η (b, a))
k

2k+1 (k + 1)!
f (k)

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

a+η(b,a)∫
a

f (x) dx

∣∣∣∣∣∣∣
≤ (η (b, a))

n

2nn!

(
1

2np+1 (np+ 1)

)1/p


(
V1
∣∣f (n) (a)

∣∣q +mV2
∣∣f (n) ( bm)∣∣q)1/q

+
(
V3
∣∣f (n) (a)

∣∣q +mV4
∣∣f (n) ( bm)∣∣q)1/q

 ,
(2.18)

where

D =

[
1

(α+ 1) 2α+1
− E

]
, E =

1

(α+ n+ 1) 2α+n+1
,

F =

[
1

(α+ 1) 2α+1
−G

]
, G =

[
B (α+ 1, n+ 1)−B

(
1

2
;α+ 1, n+ 1

)]
,

B (x, y) =

∫ 1

0

tx−1 (1− t)y−1 ,

and 1
p + 1

q = 1.
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Proof. Using Holder’s inequality and by Lemma 2.2, we get∣∣∣∣∣∣∣
n−1∑
k=0

[
(−1)

k
+ 1
]

(η (b, a))
k

2k+1 (k + 1)!
f (k)

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

a+η(b,a)∫
a

f (x) dx

∣∣∣∣∣∣∣
≤ (η (b, a))

n

n!

 1/2∫
0

λndλ


1−1/q 1/2∫

0

f (n) |(a+ λη (b, a))|q dλ


1/q

+
(η (b, a))

n

n!

 1∫
1/2

(1− λ)
n
dλ


1−1/q 1∫

1/2

f (n) |(a+ λη (b, a))|q dλ


1/q

.

Also the (α,m)-preinvexity of
∣∣f (n)∣∣q implies that

1/2∫
0

λnpdλ =

1∫
1/2

(1− λ)
np
dλ =

1

2np (np+ 1)
, (2.19)

1/2∫
0

λn
∣∣∣f (n) (a+ λη (b, a))

∣∣∣q dλ
≤

1/2∫
0

[
λn (1− λα)

∣∣∣f (n) (a)
∣∣∣q +mλα+n

∣∣∣∣f (n)( b

m

)∣∣∣∣q]dλ
=D

∣∣∣f (n) (a)
∣∣∣q + E

∣∣∣∣f (n)( b

m

)∣∣∣∣q , (2.20)

1∫
1/2

(1− λ)
n
∣∣∣f (n) (a+ λη (b, a))

∣∣∣q dλ
≤

1∫
1/2

[
(1− λ)

n
(1− λα)

∣∣∣f (n) (a)
∣∣∣q +mλα (1− λ)

n

∣∣∣∣f (n)( b

m

)∣∣∣∣q]dλ
=F

∣∣∣f (n) (a)
∣∣∣q +Gm

∣∣∣∣f (n)( b

m

)∣∣∣∣q . (2.21)

Combing the above inequalities (2.19), (2.20), and (2.21), we obtain (2.18). This
completes the proof.

Corollary 2.6. If α = 1, m = 1 and n = 2 in Theorem 2.5, then we have the
following inequality:∣∣∣∣∣∣∣f

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

a+η(b,a)∫
a

f (x) dx

∣∣∣∣∣∣∣
≤ (η (b, a))

2

8

(
1

22p+1 (2p+ 1)

)1/p
( 5

192 |f
′′ (a)|q + 3

192 |f
′′ (b)|q

)1/q
+
(

3
192 |f

′′ (a)|q + 5
192 |f

′′ (b)|q
)1/q

 .
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3. Application to some special means

Definition 3.1 ( [4]). A function M : R2
+ → R+, is called a mean function, if it

has the following properties:

1. Homogeneity: M (ax, ay) = aM (x, y) , for all a > 0,

2. Symmetry: M (x, y) = M (y, x) ,

3. Reflexivity: M (x, x) = x,

4. Monotonicity: If x ≤ x′ and y ≤ y′, then M (x, y) = M (x′, y′) ,

5. Internality: min {x, y} ≤M (x, y) ≤ max {x, y} .

Let us recall the following means for arbitrary real numbers a and b.

1. The Arithmetic mean

A = A (a, b) =
a+ b

2
, a, b ≥ 0.

2. The Geometric mean

G = G (a, b) =
√
ab, a, b ≥ 0.

3. The Power mean

Pr = Pr (a, b) =

(
ar + br

2

) 1
r

, a, b ≥ 0, r ≥ 1.

4. The Harmonic mean

H = H (a, b) =
2ab

a+ b
, a, b ≥ 0.

5. Generalized-logarithmic mean

Ln (a, b) =


a, if a = b,[
bn+1 − an+1

(n+ 1) (b− a)

] 1
n

, if a 6= b.

6. Identric mean

I (a, b) =


a, if a = b,

1

e

(
bb

aa

)
, if a 6= b.

L = L (a, b) =


a , if a = b,
b− a

ln b− ln a
, if a 6= b.

Now utilizing outcomes of Section 2, some new inequalities are derived for the above
means.

It is well known that LP is monotonic nondecreasing over p ∈ R with L−1 := L
and L0 := I. In particular, we have the following inequalities

H ≤ G ≤ L ≤ I ≤ A.
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Now let a and b be positive real numbers such that a < b. Consider the function a <
b. M : M (b, a) : [a, a+ η (b, a)] × [a, a+ η (b, a)] → R, which is one of the above
mentioned means, therefore one can obtain variant inequalities for these means as
follows:

If η (b, a) = M (b, a) in (2.6), and also with n = 2 in (2.10), one can obtain the
following interesting inequalities involving means:∣∣∣∣∣∣∣

f (a) + f (a+M (b, a))

2
− 1

M (b, a)

a+M(b,a)∫
a

f(x)dx

∣∣∣∣∣∣∣
≤ (M (b, a))

n

2

(
1

3

)1−1/q [
2

(α+ 2)(α+ 3

∣∣∣f(′′) (a)
∣∣∣q +

α

3(α+ 2)
m

∣∣∣∣f (n)( b

m

)∣∣∣∣q]
1
q

.

(3.1)∣∣∣∣∣∣∣f
(
a+

1

2
M (b, a)

)
− 1

M (b, a)

a+M(b,a)∫
a

f (x) dx

∣∣∣∣∣∣∣
≤ (M (b, a))

2

8 (2p+ 1)

[
|f ′′ (a)|q +m

∣∣f ′′ ( bm)∣∣q
α+ 1

] 1
q

. (3.2)

For q ≥ 1. Letting M = A, G, Pr, H, Ln, I, L in (3.1), and in (3.2), we can get
the required inequalities and the details are left to the interested reader.
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