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Abstract This study is about a nonlinear anisotropic problem with homo-
geneous Neumann boundary condition. We first prove, by using the technic
of monotone operators in Banach spaces, the existence of weak solution, and
by approximation methods, we achieve a result of existence and uniqueness of
entropy solution.
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1. Introduction

We consider in this paper the following nonlinear anisotropic elliptic Neumann
boundary value problem

0 Ju .
_ ;(’mai<x’ 03:1> +bu)=f in Q,

a ou
Z a; (a:, )771‘ =0 on 09,
3xi

i=1

(1.1)

where ) is an open bounded domain of RY (N > 3) with smooth boundary and
meas() > 0, b is a real function, surjective, continuous, non-decreasing defined on
R, in which b(0) = 0, f € LY(Q) and n = (1,...,mn) is the unit outward normal
on 0f).

Anisotropic problems arise in many applications as reaction-diffusion system-
s, modeling of propagation of an epidemic disease. For example, Bendahmane et
al. [2] considered a reaction-diffusion system with general anisotropic diffusivisities
and transport effects. It is supplemented with either mixed boundary conditions or
no-flux boundary conditions knowing that the model studied by Bendahmane is a
modeling of Feline leukemia virus. The paper deal with also variable exponents. In-
deed, the interest of the study of PDEs with variable exponents lies on the fact that
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most materials can be modelled with sufficient accuracy using classical Lebesgue
and Sobolev spaces L? and WP, where p is a fixed constant. However, for some
materials with inhomogeneities (blood for example), for instance, electrorheological
fluids, this is not adequate, but rather the exponent should be able to vary.

All papers tackling the issues about (1.1) considered particular cases of function
b. Indeed, in [5] , Bonzi et al. studied the following problems.

N
0 0
—Zax-“i(x’ af) +ufpr )Py = inQ,
Ni:l ' v
Zai z, g::)nl =0 on 012,

where f € L'().

In [5] , the authors use minimization technics used in [11] or [6] (see also [9,12])
to show the existence and uniqueness of entropy solution. In this paper, as the
function b is more general, it is not possible to use minimization tehnics to get
the existence of solution. Therefore, we use the technic of monotone operators in
Banach spaces (see [13]) to get the existence of entropy solutions of (1.1). For the
uniqueness, since b is not necessarily invertible, then, we proved the uniqueness of
the entropy solution in terms of b(u) which is clearly equivalent to the uniqueness
of w if and only if b is invertible.

Benboubker et al [3] studied an anisotropic problem with variable exponent
where the boundary condition is the homogeneous Dirichlet boundary condition.
Therefore, the good space where to choose the solution is the space 761’5 (')(Q) as
the set of the mesurable functions u : @ — R such that Ty (u) € Wol’ﬁ(')(ﬂ). In
this space, it is possible to use the Poincaré inequality to get some useful inequality
for the existence of entropy solutions. We do not have the uniqueness of entropy
solutions (see [3]).

In our paper, we consider anisotropic elliptic problems with homogeneous Neu-
mann boundary condition. Therefore, we have to choose the entropy solution in a
new and more general space as in [3], which is the space 7'7_11’17 (')(Q) to be defined
later.

The remaining part of the paper is the following: in section 2, we introduce
some preliminary results and in section 3, we study the existence and uniqueness
of entropy solution.

2. Mathematical preliminaries

In order to bring evidence our main result, we first have to describe the data involved
in our problem.

Let Q be a bounded domain in RY (N > 3) with smooth boundary domain 9
and p(.) = (pl(.),...,pN(.)) such that for any i = 1,...,N, p;(.) : @ — Ris a
continuous function with

1 < p; = ess inf p;(x) < esssupp;(r) := p; < oc. (2.1)
€N zeQ

For any i =1,...,N, let a; : 2 Xx R — R be a Carathéodory function satisfying:
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e there exists a positive constant C; such that
Jai(2,6)] < C1 (ji(w) + €77 (2.2)

for almost every x € ) and for every £ € R, where j; is a non-negative function in
(. : 1 1 _ 9.

Lpi( )(Q), with i@ + 7@ = 1;

o for £, n € R with & # 7 and for almost every z € (), there exists a positive

constant Cy such that

Col€ =[P if € —n| > 1,
a;(z,&) — ai(z,m)) (€ —n) = _ , (2.3)
( ) Ca|§ — nfs if |§—nl <1,
and
e there exists a positive constant C'5 such that
a;(z,€).6 > Cs¢P1 @), (2.4)

for every £ € R and for almost every x € .
The hypotheses on a; are classical in the study of nonlinear problems (see [5,6]).
Throughout this paper, we assume that

p(N — 1 p(N — 1 T-p; -1 p— N
PN )<p;<p( 7)’ P P o P , (2.5)
N(p-1) N-p i p(N —-1)
and
A}
Y —>1, (2.6)
i—1 Pi
N
N 1
where — = Z e
p i—1 Pi
A prototype example based on our assumptions is the following anisotropic p{.)-

harmonic system

pi(z)—2 u
)=+ 27)

_zN: (| du
=1 8961 ail'l

which, in the particular case when p; = p for any ¢« = 1,..., N, is the p -Laplace
equation.

We also recall in this section some definitions and basic properties of anisotropic
Lebesgue and Sobolev spaces. Set

Ci(Q) = {p € C(Q) :minp(x) > 1 for any z € Q}
e

and denotes by
pu () := max (pl(a:), . ,pN(Jj)) and  pp, () ;= min (pl(m), . ,pN(aj)).

For any p € C (), the variable exponent Lebesgue space is defined by

LPO(Q) = {uw : uwis a mesurable real valued function such that / lulP@dz < oo},
Q
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u(z)

endowed with the so-called Luxemburg norm

p(z)
[ulpc) == inf{)\>0: / dz < 1}.
al A

The p(.)-modular of the LP()(Q) space is the mapping Pp(.) LPO)(Q) — R defined
by

pp(_)(u) ::/Q|u|p(‘r)dm.

For any u € LP)(Q), the following inequality (see [7,8]) will be used later:

. o ot - +
min {|u|§(.); |U|£(4)} < pp()(u) < max {‘ulg(,ﬁ |u|g(‘)}. (2.8)
1 1
For any u € L) (Q) and v € L1)(Q), with — + —— =1 in ©, we have the
p(z)  q(=)
Holder type inequality:

1 1
wodz| < — 4+ — | [ulp()[vlg()- (2.9)

Q p q

Remark 2.1. An important condition on the exponent in the study of variable
exponent spaces is the log-Holder continuity condition which is the following.
a: 2 — R is locally log-Holder continuous on € if there exists ¢; > 0 such that

1
e+1/llz—yl)’

o) ~ o) < 1o

for all z,y € Q.

The condition « is used to get more results such as the boundedness of maximal
operators, some imbedding results or the concept of Lebesgue points, but in this
paper, this condition is not needed.

If  is bounded and p,q € C(Q) such that p(z) < g(z) for any = € €, then the
embedding LPO) () < L) (Q) is continuous (see [10, Theorem 2.8]).
Herein we need the anisotropic Sobolev space

WhPO(Q) = {u e LrnO(Q) g—“ e P(Q), i= 1,...7N}.

L

This is a separable and reflexive Banach space (see [11]) under the norm

ou
ox;

N
llullpey = [ulpar ) + D
1=1

2lpi(.)

We introduce the numbers

_Np-1) ._Np-1) _ Ng
=1 N5 “wN-¢
and define P*, P* P_ . €R* by
Pr = N Pt = 1 N d P = R
7_ﬁ7 " =max{p;,...,py} an _ oo = max{p’, P*}.
> Lo
i=1 Pi

We have the following embedding results (see [7, Corollary 2.1]).
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Theorem 2.1. Let Q@ C RY (N > 3) be a bounded open set and for all i =
1,...,N, pi € L>®(Q), pi(x) > 1 a.e. in Q. Then, for any ¢ € L>(Q) with
q(z) > 1 a.e. in Q such that

ess Ilrelg (pre (@) — q(x)) >0,
we have the compact embedding
W70 (Q) — L1O(Q). (2.10)

The following result is due to Troisi (see [14]).
Theorem 2.2. Let py,...,py € [1,400); g € WhPL-PN)(Q) and let
q=(p) if (P <N,
g€ [l,+00) if (p)* > N.

Then, there exists a constant Cy > 0 depending on N,p1,...,pn if p < N and
also on q and meas(QY) if p> N such that

N 1/N
lallowey < G I [HgmM(m i ] . (2.11)
LPi (Q)

i=1

dg
83@

In this paper, we will use the Marcinkiewicz space M?(Q) (1 < ¢ < +00) as the
set of mesurable functions g : 8 — R for which the distribution function

Ag(k) = meas({z € Q: |g(z)| > k}), k>0, (2.12)
satisfies an estimate of the form
Ag(k) < Ck™19, for some finite constant C > 0. (2.13)
We will use the following pseudo norm in M9(Q):
19| maq) == 1nf{C > 0: A\g(k) < Ck™%, ¥V k> 0}. (2.14)
Finally, we use throughout the paper, the truncation function Ty, (k > 0), by
Tk (s) = max{—k; min{k; s}}. (2.15)
It is clear that klingo Tiw(s) =s and |Tk(s)| = min{|s|; k}.
We need the following lemma proved in [5] :

Lemma 2.1. Let g be a nonnegative function in WHPO(Q). Assume p < N and
there exists a constant C > 0 such that

N

[
— Jqg1<ky 19

.
i=1 v

_ Py
/ Ty (g) [ dz + de <C(1+k), Vk>0. (2.16)
Q

Then, there exists a constant D, depending on C, such that

9| pma* () < D, (2.17)

where ¢* = N(p—1)/(N — p).
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Set 71P()(Q) as the set of the mesurable functions u :  — R such that Ty (u) €

WPL)(©). We define the space T;’ﬁ(')(ﬁ) as the set of function u € 742)(Q) such
that there exists a sequence (un)nen C WHPH) (Q) satisfying

U, — u a.e. in (2.18)

and

E)Tk (un) aTk (u)
In the sequel we denote W'71)(Q) = E to simplify.

in LY(Q) V k>0 (2.19)

3. Existence and uniqueness result

Definition 3.1. A mesurable function u € T, LA )(Q) is an entropy solution of (1.1)
if b(u) € L*(Q) and for every k > 0,

/}jm<éh)é’nwwﬂxﬁémwnwwmxSAfWHuuwm,

" (3.1)

for all p € ENL>(Q).
The existence result is the following theorem:

Theorem 3.1. Assume (2.1)-(2.6). Then, there exists at least one entropy solution
of the problem (1.1).

Proof. The proof is done in three steps.
Step 1. The approximate problem.
For any n € N*, we consider the approximate problem

1
Zax il G2 ) 4 Tufblwn) + 22 = om0,

(Pn) § A
ou,,
Zai (x, )77,» =0, on 01,
‘ Ox;
1=1
(3.2)
where f,, = T, (f) € L>=(2).
Note that
fo — f in LYQ) and ae. inQ, [[fulleo < Ak
n—+o0 ’ ~ meas(Q)’
and |fulls = [ 1falde < [ |flde = 1] (33)
Q Q
Definition 3.2. A mesurable function u,, € F is a weak solution for the problem
(P,) if
3un 1 (I)*Q
Z aZ Y dx + [ T, (b(un))vda:—kf |ty [P upvder = | fpvde,
3% 9! nJa Q

(3.4)
for every v € F.
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Let us prove the following lemma.
Lemma 3.1. There exists at least one weak solution u, for the problem (P,).

Proof. We define the operator A,, as follows:

1
Tn(b(u))vdm—i—g/ luP¥ @ =2ypdz, Y u,v e E, (3.5)
Q

/Zal( 8931)5;(1:5. (3.6)

Assertion 1. The operator A, is of type M.
e The operator A is monotone. Indeed, for u,v € E, we have

(A(u) = A(v),u = v)
= (A(u),u =) + (A(v), v — u)

/ni_v: < 8@)86% /ﬂi%< 3:51) (g;“)dx
/Qz;{a< 39«%) ( 6%)](5; axl)dx

(A(u) — A(v),u —v) >0, (3.7

since for i = 1,..., N, for almost every € 0, a;(z,.) is monotone.

then

e The operator A is hemicontinuous. Indeed, let ¢ : t € R — ¢(t) = (A(u+tv),v)
and let ¢, tg € R such that t — tg. Put w = u+tv € F and wg = u + tgv € E.

Therefore ||w—wollz.) = |[(t—to)vl|z.) = [t—=tol.|[v|[z) — 0, as w — wq in E.
We get

p(t) — p(to)| = [{A(u + tv), v) — (A(u +tov), v)]

(0w [, 0w || 20
ai| T, axl a;\ T, axi

(“)xi
1 1
< N max {< — ; )
1<isN [\p;  (Ph)”

a,(x 310> a,<x 3%) ]
$ O, AR i

Denote by ¥;(z,w) = a;(z, 2 e 2 ). Using assumption (2.2) and ( [10], Theorems 4.1

and 4.2) we have ¥;(z,w) — (2, wo) in LPiO)(Q). Then, we deduce that ¢ is
continuous, namely the operator A is hemicontinuous.

Since the operator A is monotone and hemicontinuous, then according to the
Lemma 2.1 in [13], A is of type M. Therefore, according to [1] the operator A, is
also of type M.

dx

ov
8:5,»

Assertion 2. The operator A, is coercive.
(An(u),u)

We have to show that
[l 5

— 400 as [|ul|) — +oc. Indeed, let u € E.
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We have T,,(b(u))u > 0 for all u € E.
Then

1
(Anw), 0 2 (A, + - [ @ (3.8)
Q
According to (2.4) we have
N i(z)
ou |?
A > C. dz.
Az [ S| e
Denote
5] 15
I:{ie{l,...,N}:‘ Y 31} and j:{ie{l,...,N}:‘ Y >1}.
03 |, Oy,
Then
—(A(u),u) > / dx + / dx
03 el Q (91‘7 e 0 8131
ou |P* ou |Pi ‘81& Pi
> + >
ieT O pi()  ieg O |, () ey 1 9%ilp; ()
P N P P
> ou ZZ ou _Z ou
107l ~ 10l 10T,
N _
87.L Pm
> Z — N.
i—1 Oz; pi()

Using the convexity of the application t € RT — tPm_ p— > 1, we obtain

ou
6:82‘

N Dom
(A(u),u) > Cs (Z ) — C3N. (3.9)
i=1 pi(.)

= Npm-1

e Assume [ul,, () < 1. Then, combining (3.8) and (3.9) we get

(An(u), ) > c[(i

()

Prn _ 1
) + Julfm } —1-C5N + —/ [P (@) g
nJo

S C
2 o 1l

Pm —1—-C3N, WhereC:min{ C,’3 ;1}~
Npm,71

e Assume |ul,, (y > 1. Then, (2.8) give /Q [P @) gy > |u|§;&(v).

So, combining (3.8) and (3.9) we get

N

(atia) = €| (3

=1

ou
ox i

p;‘b —

p'm,
) + |u|P1\/I(-):| — CgN
pi(.)

- 1
> ——||ul|%", — C3N, where C' = min 6:3 ;= -
9pm—1'""1P0) Nem—1"n
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Consequently, since p,, > 1, the operator A, is coercive.

Assertion 3. The operator A, is bounded.
Indeed, let w € F C E, where F is a bounded space and v € E. According to (2.2)
and (2.9) and as b is onto, we have

N
P
|<An(u),v>\§Z/Q ai( 533) | gz +/ 1b(w)|[o]dz + — /|u‘pw> 2 uolda
i=1 v
N pi(xz)—1
ov ou |P ov
<
c@(/gz( )| o+ [ |2 2 d:c)

/\b J[vlda + = /|u|PM<f “1Jo|de
1 1 ov ou
N Gl W LS
2 (e e [ (00 55

1 1 1
n 0|v||1+(+ )!
n pM

pi(z)—1

pé(»)>

(Phr) NSLLOYEE
where C' is a positive constant.

Then the operator A, is bounded.

The operator A, is of type M, bounded and coercive on F to its dual E*, then
A,, is surjective (see [13], Corollary 2.2). Therefore, for f, € E*, we can deduce
the existence of a function u,, € E such that (A4, (u,),v) = (fn,v) forall veE,
namely

Z/C%( 8un> 8’0 +/Tn(b(un))’0d$+l/ |un|;DM(r)—2un,de:/fnvdy;.
Oz; Q nJo Q

O

Our aim is to prove that these approximated solutions u, tend, as m goes to

infinity, to a mesurable function » which is an entropy solution of the problem
(1.1). To start with, we establish some a priori estimates.

Step 2. A priori estimates
Assume that (2.1)-(2.6) holds and let w,, be a solution of problem (P,). We have
the following results:

Lemma 3.2. There exists a positive constant C5 which does not depend on n such

that
Z /|un|<k}

Proof. Let us take v = Ti(u,,) as test function in (3.4). Since

Ay, |P

Cdr < C(1+ k) (3.10)

for every k > 0.

1
| Db Tutwn)do+ - [ a0 D) 20, (1)
Q Q
using relation (2.4), we obtain
N i(w)
ouy, |*
Cs / - dz < k|| f|]1. (3.12)
; {lunl<k} | OTi
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We have

N

;/{Iunék}

N

Z/{un<k | G >1}

N
<>
i:zl {lun|<k}

1
< C—k||f\|1 + N.meas(€2) due to relation (3.12)
3

Ou, |?
8171'

1dac

- N
dxr + /
Z {lun|<k; |G| <1}

dx + N.meas(Q)

Ouy, |?
3xi

Ou,, |*
53%

ldx

ouy, pil
8%1'

1
< C5(1+ k) with C5zmax{c||f||1; N.meas(Q)}.
3

Lemma 3.3. There exists a constant Cg > 0 such that

/|Tk (un) |pMd$U+Z/

Proof. We have

/|Tk(un)|p1\_4d;v:/ |Tk(un)|p;4dm+/ |Tk(un)|p&d:ﬂ
Q {1 Tk (un)|<1} {ITk (un)|>1}

< meas(Q) —|—/ kP dg
{ITk (un)|>1}

3un

Cdr < Co(k+1). (3.13)

{lun|<k}

< meas(Q)(1 + kPar).

Then, using Lemma 3.2, we obtain

/ Tk(un>|”»fda:+§ /

{lun|<k}

ou,, Py
d
al‘i .

< meas(Q)(1+ N + kPa) + k|| f||1 < Co(1 + k),

where Cg = max {meas(Q)(l—f—N—i—kle);Hﬂ1}. O
Lemma 3.4. For any k > 0, there exists some constants C7,Cs > 0 such that
(@) [unllpmar @) < Cr

@ |5

SCg; Vi:1,...N.

9

MPi q/ﬁ(Q)

Proof.

(1) is a consequence of lemmas 3.3 and 2.1.
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(it) e Let o« > 1. For any k > 1, we have

Adun (@)
})

Oz,
= meas({x c€Q: ‘8u"
8@-
ouy,
> a;|up| < k| + meas
al'i
dx + Ay, (k)

B ou,,
= meas oz,

<)
{158 1> 05 fun|<h}

/ (1 ou,
S —
{Jun|<k} \&

a.’Ei
<a P Ck+Ck™ 7.

> ;| > k:})

Py
) dx + Ay, (k)

Then -
Aogu (@) < B(ka™ +k~7), (3.14)

with B a positive constant.
Let us consider the function
T

g:[l,+oo[— R, 2+ g(z) = +277.

alPi

B U o
We have ¢'(z) = 0 forxz = (q*api ) 41 Thus, if we take k = (q*api ) H > 1
in (3.14) we get

411
)\%%(a)<Bk<q+ >

g P

< Ma~ FTIP:
< Ma_p;‘I/f’, V o> 1 with M a positive constant.

e If 0 < a < 1, we have

Aou, () = meas({‘cz)un

dx;

> a}) < meas(Q) < meas(Q)a—P{q/ﬁ_

T
Then -
Xow, (@) < (M 4 meas(Q))a™P VP, Y o > 0.
Oz,
Therefore, we deduce that there exists a positive constant Cg such that

Hc’?un

N.
8xl~

<Cs, Vi=1,...
Mp;q/ﬁ(Q)

)

Step 3. Existence of entropy solution
Using Lemma 3.4, we have the following useful lemma (see [5] ).

Lemma 3.5. Fori=1,...,N, as n — +00, we have

oun, ou . 1
a; <x’8ml) — ay (:v,axl> in L'(Q) ae ze (3.15)
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In order to pass to the limit in relation (3.4), we also need the following convergence
results which can be proved as in [4]:

Proposition 3.1. Assume (2.1)-(2.6). If u, € E is a weak solution of (P,) then
the sequence (uy )nen+ 18 Cauchy in measure. In particular, there exists a measurable
function u and a sub-sequence still denoted by u, such that u, — u in measure.

Proposition 3.2. Assume (2.1)-(2.6). If u, € E is a weak solution of (P,) then

ou
(i) foralli=1,...,N, a—n converges in measure to the weak partial gradient of
z;

uy

(ii) foralli=1,...,N andk >0, a; <J:, £Tk(un)) converges to a; (a:, £Tk(u)>

in LY(Q) strongly and in LP:O)(Q) weakly.

We can now pass to the limit in relation (3.4).
Let ¢ € EN L>*(R2) and choosing Ty (u, — ¢) as test function in (3.4), we get

Z/( o) o Tilun - >dx+/T(b< il — 9)da

’L

/ |, [P @) =200, T (1, — @)daz = / Tk (u (3.16)

For the right-hand side of (3.16) we have
/an(:r)Tk(un —@)dz — /Qf(x)Tk(u — )dx, (3.17)
since f, converges strongly to f in L'(Q) and Ty (u, — ¢) converges weakly-* to

Ti(u— @) in L*®() and a.e in .
For the first term of (3.16) we have (see [5] ):

liminfi/a- x% aT(u - )dgc>i/a- x% iT(u— )dx
n = Q ‘ ’8$Z‘ 8931 k " 90 _i:1 Q ’ ’8xi 8IZ k (,0 '

(3.18)
We focus our attention on the second term of (3.16). We have
T (0(un) Tk (tr, — @) — b(u)Ti(u — @) ae. x € Q (3.19)
and
T (b ( )Tk (tn = @) < klb(un)|. (3.20)
[1

Now we show that [b(u,)| < — ‘( ay- Indeed, let us denote by

st 1if s>0
H.(s) =min | —;1 d signg (s) = '
(s) = min < ; > and  signg (s) { 0 if 5<0.

If v is a maximal monotone operator defined on R, we denote by 7, the main section
of v; i.e.,

minimal absolute value of v(s) if ~(s) # 0,
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Remark that as e goes 0, H.(s) = signg (s).
We take ¢ = H(u,, — M) as test function in (3.4), for the weak solution u,, and
M > 0 (a constant to be chosen later), to get

al du,\ 0 1
Z/ ai< ") H.(up — M)dz + = | |un|P @20, H (u, — M)dx
i=1 7%

© s ) 0ri n Jq
+/ T (b(un)) He(uy — M)da = / foHe(u, — M)dzx. (3.21)
Q Q

We have

N
Z/Qai <x, gl;n> (ng&(un — M)dx
i=1 a A
N
! ) 0 .
eg/{w<1}ai<x’ m) B tn — M) dz

1 / ( aun> 0
T z ai| ¢, 7— | s—undzx
€ = J{o<u,—m<c} Ox; ) 0x;

>0 according to (2.4),

and

/ |un\pM(’”)_2unHE(un — M)dx
Q

n *M +
:/ ) gy [pro(e)-2, (U = M7
{(”n—ezu) <1} €

pyv(x)—2
+/{(“"M)+>1} |Un| Und.’L‘

|un\pM(z)72un(un — M)dx

>1 /
€ J{M<u,<M+e}

> 0.

Then, (3.21) give

/ T, (b(un))He(un — M)dz < / fnHe(u, — M)dz,
Q Q

which is equivalent to

/Q (Tn (b(un)) =T, (b(M))>HE(un — M)dz < /Q (fn -, (b(M)))HE(un — M)da.

Now we let € goes to 0 in the above inequality to obtain

/Q(Tn(b(un))—Tn(b(M)))+dx</Q(fn—Tn(b(M)))sz’gng(un—M)dx. (3.22)
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Choosing M = by (||fu]|) in the above inequality (since b is surjective). We
obtain

A(nxmwn—nummw0+wxgé(n—mummmﬁwmﬁwwwyammm»W-

(3.23)
171

meas(a) We have

For any n >

/< |hW0W@Wﬁ%Wmuwx
/(‘”%me< b (1l o))z < 0.

Then, (3.23) gives

i /112
/ (Tn(b(un)) - ||fn||oo> drx <0 forall n > ——Fr
Q

meas(§))’

+
Hence, for all n > m!ﬂ(lﬂ), we have (Tn (b(un)) — ||fn||oo> =0 a.e. in Q, which
implies that

Ty (b(un)) < |lfulloc for all n > m!isll(lm (3.24)

Let us remark that as u,, is a weak solution of (3.2), then (—u,) is a weak solution
to the following problem

ou 1 -
§ n - pm(@)=2,, i
81‘2 az( ) + T, (b( )) + n|un| Up = fn in Q,

Z

(P){ &
- Oou,
Zai( >m—0 on 09,
i=1 Oy
) ) (3.25)
where @;(z, &) = —ai(z,=¢), b(s) = —b(—s) and fn = —fn.
According to (3.24) we deduce that
T (= b(un)) < | fnll foralln>ﬁ.
" = e meas(Q)
Therefore,
1£1lx
> — —_—. .
T (bfun)) 2 ~Ilfalloe forall n> s (3.26)

It follows from (3.24) and (3.26) that for all n > Ll |7, (b(un))] < [ fulls
which implies
I1f1lx .

< < ———— a.e.
1b(un)| < [ falleo < meas($2) a.e. I

We can now use the Lebesgue dominated convergence theorem to get

i [ T (bun ) Tkt — 0)da = /Q b(u)To(u — )da. (3.27)

n—+oo Q
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For the third term of (3.16), let us prove that

1
lim inf f/ |un|pM(w)*2unTk(un —p)dz > 0.

We have
[t 2, 1, = )
= [ (laal 2, = o2 ) T, —
+ /Q lp[PM 25T (uy, — p)da.

Since the quantity (|un|pM(’”)_2un - |cp|pM("c)_2<p> Ti(un — ) is non negative and

since for all z € Q, € — |£|P7(®)=2¢ is continuous, we get

(unwwun—|so|pM(x>-2so)Tk<un—w> S (|u|pM<x>-2u—|so|pM(x>-2so)Tk<u—so>

a.e. in 2, and by Fatou’s lemma, it follows that
lim inf/ <|un|PM(x)2un _ |<p|pM(a:)2(p> Tk(un _ gO)dl‘
n Q

> [ (Iupee2u = o2 ) - ) (3.28)
Q

We have
[ e -2glda = [ folr-as
Q Q

pum(z)—1
<[ (||so||oo) 0s
Q
pm(z)—1 pm(xz)—1
</ (|so||oo) i [ (||go|oo) dx
{lle]loo <1} {llelleo>1}

+_
< meas(2) + (|l¢l|oc)™ "meas(Q) < +o0.
Hence, |p[P¥®)=2p € L1(Q).

Since Ty (u,, — @) converge weakly-* to Ty (u—¢) in L>(Q) and |p[PM(#) =24 € L1(Q),
it follows that

hifl/ | PM 2T (u, — @) = / |lPM 20T (u — p)da. (3.29)
Q Q
By adding (3.28) and (3.29), we get
lim inf/ |, [P ) =200, T (w0, — @)d > / [P ) =2y Ty (u — ) d. (3.30)
n Q Q

Since
/ [P @ =2y T (u — @)dax < k/ Ju[P7 (&)1 dy < 400,
Q Q
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we get finally
1 .
lim inf f/ |t [P ) =200, T (uy, — @)d > 0. (3.31)

Combining (3.17), (3.18), (3.27) and (3.31) we obtain

ﬁ;/ﬂai (w gjfi) 6(; Ti(u — p)dx + /Q b(u)Ty(u — p)dr < /Qf(x)Tk(u — p)dz.

(3.32)
Then u is an entropy solution of (1.1). O

Theorem 3.2. Assume that (2.1)-(2.6) hold true and let u be an entropy solution
of (1.1). Then, u is unique.

Proof. The proof is done in two steps.
Step 1. A priori estimates

Lemma 3.6. Assume (2.1)-(2.6) holds and f € L*(2). Letu be an entropy solution

of (1.1). Then
N

Z/{ulék}

i=1

pi(z)

ou
6$i

k
dx < allf\ll (3.33)

and there ezists a positive constant Cg such that
[o(u)[|1 < Co.meas(§2) + || f]1- (3.34)

Proof. Let us take ¢ = 0 in the entropy inequality (3.1).
e By the fact that / b(u)Ty(u)dxz > 0 and using the relation (2.4), we get (3.33).
Q

N
0 0

e Using the fact that Z /Q ai(z, T;)%Tk(u)daj > 0, relation (3.1) gives

i=1 ’ v

/ b(u) T (u)dar < / F@)Te(w)da. (3.35)
Q Q

By (3.35), we deduce that

/ anMM+/ b() T (w)dz < k|| ]|,
{|u|<k} {lu|>k}
which imply that

/ b(u) Ty (u)dz < K|f]l
{lul>k}

/ b(u)dx+/ —b(u)dz < || f|]1.
{u>k} {u<—k}

/ b(w)|dz < || f]]1.
{lu|>k}

or
Therefore

So, we obtain

b(u)ldx = b(u)|dx b(u)|dx
Aun AMHHN +ADMHN
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s/ Ib(w)dz + || £]]s.
{lu|<k}

Since the function b is non-decreasing, then
/ Ib(w)|dz < max{b(k): [b(—k)[}.meas(Q).
{lul<k}

Consequently, there exists a constant C9 = max{b(k); |b(—k)|} such that
[b(w)[h < Co.meas() +[[f]]x-
O

Lemma 3.7. Assume (2.1)-(2.6) holds and let f € LY(Q). If u is an entropy
solution of (1.1), then there exists a constant D which depends on f and §) such

that
D
meas{|u| > k} < SN EAE Vk>0 (3.36)

and a constant D' > 0 which depends on [ and Q such that

ou
meas oz,

Proof. e For any k > 0, the relation (3.34) gives

/ min(b(k), [b(—k)[)dz < / Ib(w)|dz < Co.meas(Q) + ||f]]r.
{lu|>k} {Ju|>k}

D’
>k}§ L Vk>1 (3.37)
k ®ap)’

Therefore,
min(b(k), |b(—k)|).mes{|u| > k} < Cg.meas(Q) + || f||1 = D;
that is

D
meastiel= 1= S R

e See [4] for the poof of (3.37). O

Lemma 3.8. Assume (2.1)-(2.6) holds and let f € LY(Q). If u is an entropy
solution of (1.1), then

lim / LfIX{ju|>h—tydz =0, (3.38)
Q

h— 400
where h >0 and t > 0.
Proof. Since the function b is surjective, according to (3.36), we have
. lim meas{|u| >h—t} =0 and as f € L}(Q), it follows by using the Lebesgue
— 400
dominated convergence theorem that lim / | FIX{|u|>h—tydz = 0. O
h—+o00 Jo

Lemma 3.9. Assume (2.1)-(2.6) holds and let f € LY(2). If u is an entropy
solution of (1.1), then there exists a positive constant K such that
ou

Pp;<-><8xi
where F ={h < |u| <h+k}, h>0, k>0.

pi(z)—1
XF><K, Vi=1,...,N, (3.39)
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Proof. Let ¢ =Ty (u) as test function in the entropy inequality (3.1). We get

i_v:/gai <1’7 58;1) 8iTk(u — Th(u))dx +/ b(u) Ty (u — Ty, (u))dz

Q

o J(@)Ty(u — Ty (u))d.

Thus,

ou\ 0
EI/’ o (1, o) e < K1
{h<|u|<h+k} Ti ) 0%

and using (2.4), we have

ou pi(z) 03
dor < — Vi=1...,N.
o dr< P Vi=1.,
Consequently,
au pl(m) 1 )
pp;(.)(am xF>§K, Vi=1,...,N.

O
Step 2. Uniqueness of entropy solution.
Let h > 0 and w,v be two entropy solutions of (1.1). We write the entropy
inequality corresponding to the solution u, with T, (v) as test function, and to the
solution v, with T} (u) as test function:

Z/az< a@)(%lT (1 — Ty (v ))d:c+/ﬂb(u)Tk(u—Th(v))dx

< / F(@)Te(u — Ty (v))da (3.40)
Q

and

Z / a1< zm) 5 Tev = Ta(w)ds + /ﬂ b(0)Ti (v — T (w))de
s/f@ﬂ@—ﬂ@ﬂm (3.41)
Q

Upon addition, we get

Z/a< 3x,>asz(U_Th( ))da

+ Z /Q a; (m, g;i) %Tk(v — Th(u))dx
+ /Q b(u) Ty (u — Ty (v))dz + /Q b(v)T (v — Th(u))dx
< /Q F(@) [To(u — Th(v)) + Ti(v — Ta(u))] da. (3.42)
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Define
By ={lu—v| <k [v|<h}; Ea=Ein{jul<h} and Es=E N{[ul > h}.

We start with the first integral in (3.42). We have
5‘u> 0
x, — T (u — Th(v))dzx
Z/u T (v)|<k} < Ox; ) Ow;

= Z/ a; (x, 8u> iTk(u — Th(v))dz
— J{fu—Ty (v)|<k}N{|v|<h} O0z; ) Ox;

ou\ 0
+ / a; (x, > T (u — Th(v))dx
Z {lu—Ty (v)|<k}N{|v|>h} Oz; ) Oz;

N
= Ju—vl<kin{lvl<n} Oxi)  Owi
N
+Z/ aA<x’au) ou .
{lu—hsign(v)|<k}n{|v|>h} O0x; ) 0x;

N
ou\ 0
> —
—;/Elaz< 8xz)8:vi(u v)dz
N
ou\ 0 P
;/ ( 3xz)amzu—vdw+2/ ( >8xiu_v)dx'

Then, we obtain

—~

N

ou ) 0
ai| T, 5— Ty (u — Th(v))dx
Z /{|U—Th(v)<k} ( Ox; ) Ox;

ZN:/ <8xz)ai“”dx2/ (%)gsid“' (3.43)

According to (2.2) and the Holder type inequality we have

ov
d
By ( (Q)xz)ami v

Pi@=IN | gy
<Clz/ ( 8% ) ox; dr
U |p;(x)—1 v

<oy (uz \ b ) |

im1 o %2 () {h<|ul<h+k} O i), (hok<lvl<h)

where
Mau pi(a)—1 _ H|8u pi(a)—1
Oz PO {h<lul<hiky || OFi L7 ({h<]ul <h-+k})
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ou |Pi(x)—1

(')x.;

For ¢ = 1,..., N, the quantity (|ji|p;(,) +

) is finite

P (), {h<|u|<h+k}

according to relation (2.8) and Lemma 3.9.
According to Lemma 3.8, the quantity |6% i h—E<v|<h}

as h goes to infinity. Consequently the last integral of (3.43) Eonverges to zero as h

goes to infinity. Then

converges to zero

N

ou ) 0
@i\ ® Ti,(u — Th(v))d
; /{Iu—Th(v)|gk} ( Ox; ) Ox;
> ou\ 0
> h .
=it ; /E al( axz) Al (3.44)

with lim I, =0.
h—s 400
We may adopt the same procedure to treat the second term in (3.42) to obtain

ov, 0
a;(x, — Te(v —Th(u))dx
Z/y Ty, (w)| <k} ai( 8-1'1‘)8331‘ k n(w)

> Jp — Z/ 3xi (u —v)dz, (3.45)

with lim Jp =0.

h—s 400

For the two other terms in the left-hand side of (3.42), we denote
K, = / b(uw)Ty(u — Ty (v))dx + / b(v)Ti (v — Th(u))dz.
Q Q
We have
b(u)Tk(u — Th(v)) — b(u)Te(u —v) a.e since h — 400
and
|b(w) T (u — Ti(v)] < klb(w)| € L ().

Then, by the Lebesgue dominated convergence theorem, we obtain

hirrioo A b(u) Ty (u — Th(v))dx = /Q b(u)Tk(u — v)dz.

In the same way, we get

im [ 60T = T ) = /Q b(v) Tk (v — u)da.

Then
lim K= /Q (b(w) — b(v)) Ty (u — v)d. (3.46)

h—s 400

Now, considering the right-hand side of inequality (3.42), we have

lim f(z )(Tk(u —Th(v)) + Tp(v — Th(u))> =0 ae

h—s 400
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and
| £(@) (Th(u = T () + Tulo — T (w))) | < 2k|f] € L'(%).

By the Lebesgue dominated convergence theorem, we obtain

lim /Qf(x) (T;C (u—Th(v)) + Ti (v — Th(u)))dx = 0. (3.47)

h—+o0

After passing to the limit as h goes to +o0o in (3.42) we get

N

au 8’[} 8
; /{lu—vlgk} <ai (2, 87) — i, 8xi)> oz, (4~ )de
+/ (b(w) — b(v)) T (u — v)dz < 0. (3.48)
Q

Since b and a;(x,.) are monotone then

[ (0 o) Tt — vy 0 (3.49)

and

N
6'[1, an 8
/{luv|<k} ; <ai (2, 87:61-) —ail, &m)) o, (4~ V) =0. (3.50)

K2

We deduce from (3.49) that

khi?o ; (b(u) — b(v))%Tk(u —v)dr = /Q |b(u) — b(v)|dx = 0. (3.51)

According to (2.3), we deduce from (3.50) that, for i = 1, ..., N,

0
8.131'

(u—w)

=0 aex e} thatistosay u—v=0C ae z €,

where C' is a positive constant. Therefore
u—v=C aex €l

and
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