NORM ESTIMATIONS FOR PERTURBATIONS OF THE WEIGHTED MOORE-PENROSE INVERSE*

Xiaobo Zhang¹, Qingxiang Xu¹,† and Yimin Wei²

Abstract For a complex matrix \(A \in \mathbb{C}^{m \times n} \), the relationship between the weighted Moore-Penrose inverse \(A_{M1N1}^\dagger \) and \(A_{M2N2}^\dagger \) is studied, and an important formula is derived, where \(M_1 \in \mathbb{C}^{m \times m} \), \(N_1 \in \mathbb{C}^{n \times n} \) and \(M_2 \in \mathbb{C}^{m \times m} \), \(N_2 \in \mathbb{C}^{n \times n} \) are different pair of positive definite hermitian matrices. Based on this formula, this paper initiates the study of the perturbation estimations for \(A_{MN}^\dagger \) in the case that \(A \) is fixed, whereas both \(M \) and \(N \) are variable. The obtained norm upper bounds are then applied to the perturbation estimations for the solutions to the weighted linear least squares problems.

Keywords Weighted Moore-Penrose inverse, norm upper bound, weighted linear least squares problem.

1. Introduction

Throughout this paper \(\mathbb{C}^{m \times n} \) is the set of \(m \times n \) complex matrices and \(\| A \| \) denotes the 2-norm or spectral-norm of \(A \in \mathbb{C}^{m \times n} \). When \(m = n \) a positive definite matrix of \(\mathbb{C}^{n \times n} \) is always assumed to be hermitian, and the identity matrix of \(\mathbb{C}^{n \times n} \) is denoted by \(I_n \) or simply by \(I \). For any \(A \in \mathbb{C}^{m \times n} \), the range, the null space and the conjugate transpose of \(A \) are denoted by \(\mathcal{R}(A) \), \(\mathcal{N}(A) \) and \(A^* \) respectively. Let \(M \in \mathbb{C}^{m \times m} \) and \(N \in \mathbb{C}^{n \times n} \) be two positive definite matrices, the weighted Moore-Penrose inverse \(A_{MN}^\dagger \) is the unique element \(X \) of \(\mathbb{C}^{n \times m} \) which satisfies

\[
AXA = A, XAX = X, (MAX)^* = MAX \text{ and } (NXA)^* = NXA. \tag{1.1}
\]

The weighted Moore-Penrose inverse has many applications in the weighted linear least squares problem [2–5, 7, 15–17], statistics [6], analytical dynamics [12], two-point boundary value problems [8] and so on. In this paper we study the perturbation estimation for the weighted Moore-Penrose inverse \(A_{MN}^\dagger \). Some literatures [13, 18] are focused on the case that the weights \(M \) and \(N \) are fixed, whereas \(A \) is variable. Some others [1, 3–5, 9–11, 14] studied another case that \(A \) is fixed, \(N \) is the identity matrix, while \(M \) is a variable positive definite diagonal matrix. For a motivation to the study of the later case, the reader is referred to [3, Section

¹the corresponding author. Email address:qxxu@shnu.edu.cn(Q. Xu)

¹Department of Mathematics, Shanghai Normal University, Shanghai 200234, PR China

²Institute of Mathematics, School of Mathematical Sciences, Fudan University, Shanghai, 200433, PR China

*The authors were supported by National Natural Science Foundation of China under grant 11171222 and National Science Foundation of China under grant 11271084.
8], [4, Section 1.1] and [5, Section 1.1] for the interior methods in linear programming and convex quadratic programming. The key point of this paper is the characterization of the relationship between the weighted Moore-Penrose inverses A_{MN}^\dagger, where A is fixed, while both M and N are variable. Based on this formula, this paper initiates the study of the perturbation estimations for A_{MN}^\dagger in the case that A is fixed, whereas both M and N are variable. The obtained norm upper bounds are then applied to the perturbation estimations for the solutions to the weighted linear least squares problems.

The paper is organized as follows. In Section 2, the relationship between the weighted Moore-Penrose inverses $A_{M_1N_1}^\dagger$ and $A_{M_2N_2}^\dagger$ is studied, and an important formula (2.7) is derived. This formula is applied in Section 3 to the study of the perturbation estimations for A_{MN}^\dagger, where A is fixed, while M and N are variable. The obtained norm upper bounds are then applied to the perturbation estimations for the solutions to the weighted linear least squares problems. Finally, two numerical examples are provided in Section 5 to illustrate the upper bounds obtained in Sections 3 and 4.

2. Relationship between the weighted Moore-Penrose inverse

Throughout this section $A \in \mathbb{C}^{m \times n}$ is arbitrary, and $M, M_1, M_2 \in \mathbb{C}^{m \times m}$, $N, N_1, N_2 \in \mathbb{C}^{n \times n}$ are all positive definite.

Lemma 2.1. [13, Theorem 1.4.4] It holds that
\[
\mathcal{R}(A_{MN}^\dagger) = N^{-1}\mathcal{R}(A^*) \quad \text{and} \quad \mathcal{N}(A_{MN}^\dagger) = M^{-1}\mathcal{N}(A^*).
\]

Lemma 2.2. It holds that $AA_{M_1N_1}^\dagger = AA_{M_2N_2}^\dagger$ and $A_{M_1N_1}^\dagger A = A_{M_2N_2}^\dagger A$.

Proof. Clearly, $\mathcal{R}(AA_{M_1N_1}^\dagger) = \mathcal{R}(A) = \mathcal{R}(AA_{M_2N_2}^\dagger)$, and by Lemma 2.1 we have
\[
\mathcal{N}(AA_{M_1N_1}^\dagger) = \mathcal{N}(A_{M_1N_1}^\dagger) = M^{-1}\mathcal{N}(A^*) = \mathcal{N}(AA_{M_2N_2}^\dagger).
\]
This completes the proof that $AA_{M_1N_1}^\dagger$ and $AA_{M_2N_2}^\dagger$ have the same range and the same null space. Since both of them are idempotent, they must be equal. The proof of $A_{M_1N_1}^\dagger A = A_{M_2N_2}^\dagger A$ is similar. \qed

Lemma 2.3. It holds that
\[
(I - A_{M_1N_1}^\dagger A)N_1^{-1}N_2A_{M_2N_2}^\dagger A = 0, \tag{2.1}
\]
\[
AA_{M_2N_2}^\dagger M_1^{-1}M_2(I - AA_{M_1N_1}^\dagger) = 0. \tag{2.2}
\]

Proof. By (1.1), we have
\[
N_2A_{M_2N_2}^\dagger A = (A_{M_2N_2}^\dagger A)^*N_2 \quad \text{and} \quad A_{M_1N_1}^\dagger AN_1^{-1} = N_1^{-1}(A_{M_1N_1}^\dagger A)^*.
\]
It follows that
\[
A_{M_1N_1}^\dagger AN_1^{-1}N_2A_{M_2N_2}^\dagger A = N_1^{-1}(A_{M_1N_1}^\dagger A)^*(A_{M_2N_2}^\dagger A)^*N_2
\]
\[
= N_1^{-1}(A_{M_2N_2}^\dagger (AA_{M_1N_1}^\dagger A))^*N_2 = N_1^{-1}(A_{M_2N_2}^\dagger A)^*N_2 = N_1^{-1}N_2A_{M_2N_2}^\dagger A.
\]
This completes the proof of (2.1). The proof of (2.2) is similar. \qed
Lemma 2.4. It holds that $A_{M,N_2}^\dagger = R_{M:N_1,N_2}^{-1} \cdot A_{M,N_1}^\dagger$, where

$$R_{M:N_1,N_2} = A_{M,N_1}^\dagger A + (I - A_{M,N_1}^\dagger A)N_1^{-1}N_2.$$ \hspace{1cm} (2.3)

Proof. First, we prove that $R_{M:N_1,N_2}$ is nonsingular. Let $x \in \mathbb{C}^n$ be given such that $R_{M:N_1,N_2}x = 0$. Then it is obvious from (2.3) that

$$A_{M,N_1}^\dagger Ax = 0 \text{ and } (I - A_{M,N_1}^\dagger A)N_1^{-1}N_2x = 0,$$

which in turn implies $Ax = 0$, and $N_1^{-1}N_2x \in \mathcal{R}(A_{M,N_1}^\dagger) = \mathcal{R}(A_{M,N_1}^\dagger) = N_1^{-1}\mathcal{R}(A^*)$. Thus, $x = N_2^{-1}A^*u$ for some $u \in \mathbb{C}^m$. It follows that

$$\langle N_2^{-1}A^*u, A^*u \rangle = \langle Ax, u \rangle = 0 \implies A^*u = 0 \implies x = N_2^{-1}(A^*u) = 0.$$

Next, we prove that $A_{M,N_1}^\dagger = R_{M:N_1,N_2} \cdot A_{M,N_2}^\dagger$. In fact, by (2.3) and (2.1), we have

$$R_{M:N_1,N_2} \cdot A_{M,N_2}^\dagger = A_{M,N_2}^\dagger (AA_{M,N_2}^\dagger A) = A_{M,N_1}^\dagger A,$$

which is combined with Lemma 2.2 to conclude that

$$R_{M:N_1,N_2} \cdot A_{M,N_2}^\dagger = R_{M:N_1,N_2} \cdot A_{M,N_2}^\dagger AA_{M,N_2}^\dagger$$

$$= R_{M:N_1,N_2} \cdot A_{M,N_2}^\dagger AA_{M,N_1}^\dagger = A_{M,N_1}^\dagger AA_{M,N_1}^\dagger = A_{M,N_1}^\dagger.$$ \hspace{1cm} \Box

Lemma 2.5. It holds that $A_{M_2,N}^\dagger = A_{M_1,N}^\dagger \cdot L_{M_1,M_2:N}$, where

$$L_{M_1,M_2:N} = AA_{M_1,N}^\dagger + M_2^{-1}M_1(I - AA_{M_1,N}^\dagger).$$ \hspace{1cm} (2.4)

Proof. First, we prove that $L_{M_1,M_2:N}$ is nonsingular. For any $x \in \mathbb{C}^m$, if

$$L_{M_1,M_2:N}x = AA_{M_1,N}^\dagger x + M_2^{-1}M_1(I - AA_{M_1,N}^\dagger)x = 0,$$ \hspace{1cm} (2.5)

then by (2.5) and (2.2) we get

$$AA_{M_1,N}^\dagger x = (AA_{M_2,N}^\dagger)AA_{M_1,N}^\dagger x = AA_{M_2,N}^\dagger L_{M_1,M_2:N}x = 0.$$

Substituting the above equation into (2.5) yields

$$M_2^{-1}M_1(I - AA_{M_1,N}^\dagger)x = 0$$

$$\implies (I - AA_{M_1,N}^\dagger)x = 0$$

$$\implies x = AA_{M_1,N}^\dagger x + (I - AA_{M_1,N}^\dagger)x = 0.$$

Next, we prove that $A_{M_2,N}^\dagger \cdot L_{M_1,M_2:N} = A_{M_1,N}^\dagger$. In fact, from (2.2) we have

$$A_{M_2,N}^\dagger M_2^{-1}M_1(I - AA_{M_1,N}^\dagger) = 0.$$ \hspace{1cm} (2.6)

Therefore, by (2.4), (2.6) and Lemma 2.2, we obtain

$$A_{M_2,N}^\dagger \cdot L_{M_1,M_2:N} = (A_{M_2,N}^\dagger A)A_{M_1,N}^\dagger = (A_{M_1,N}^\dagger A)A_{M_1,N}^\dagger = A_{M_1,N}^\dagger.$$ \hspace{1cm} \Box

Now we state the main result of this section as follows:
Theorem 2.1. It holds that
\[A_{M_2N_2}^\dagger = R_{M_1N_1N_2}^{-1} \cdot A_{M_1N_1}^\dagger \cdot L_{M_1,M_2N_1}^{-1}, \] (2.7)
where \(R_{M_1N_1N_2} \) and \(L_{M_1,M_2N_1} \) are defined by (2.3) and (2.4), respectively.

Proof. First note from (2.3) and Lemma 2.2 that \(R_{M_2N_1N_2} = R_{M_1N_1N_2} \). Thus, we may apply Lemmas 2.4 and 2.5 to conclude that
\[A_{M_2N_2}^\dagger = R_{M_1N_1N_2}^{-1} \cdot A_{M_1N_1}^\dagger = R_{M_1N_1N_2}^{-1} \cdot A_{M_1N_1N_2}^\dagger \cdot L_{M_1,M_2N_1}^{-1}. \]

\[\square \]

3. Norm estimations for the weighted Moore-Penrose inverse

Throughout this section, \(A \in \mathbb{C}^{m \times n} \) is fixed, \(M \in \mathbb{C}^{m \times m} \) and \(N \in \mathbb{C}^{n \times n} \) are two positive definite matrices. Let \(\hat{M} \) and \(\hat{N} \) be perturbations of \(M \) and \(N \) defined by
\[\hat{M} = M + \delta_M \text{ and } \hat{N} = N + \delta_N, \] (3.1)
such that
\[\delta_M \in \mathbb{C}^{m \times m} \text{ and } \delta_N \in \mathbb{C}^{n \times n} \text{ are hermitian}, \] (3.2)
\[\|\delta_M\| < \frac{1}{\|M^{-1}\|} \text{ and } \|\delta_N\| < \frac{1}{\|N^{-1}\|}. \] (3.3)

It follows from (3.2) and (3.3) that both \(\hat{M} = M + \delta_M \) and \(\hat{N} = N + \delta_N \) are also positive definite. Based on the formula (2.7), we study norm estimations associated with \(A_{MN}^\dagger \) and \(A_{\hat{M}\hat{N}}^\dagger \).

Lemma 3.1. The matrices \(M(I - AA_{MN}^\dagger) \in \mathbb{C}^{m \times m} \) and \((I - A_{MN}^\dagger)N^{-1} \in \mathbb{C}^{n \times n} \) are both positive semi-definite.

Proof. For simplicity, we put
\[T = M(I - AA_{MN}^\dagger) \text{ and } S = (I - A_{MN}^\dagger)N^{-1}. \] (3.4)

By (1.1), we have
\[(AA_{MN}^\dagger)^*T = (MAA_{MN}^\dagger)^*(I - AA_{MN}^\dagger) = MAA_{MN}^\dagger(I - AA_{MN}^\dagger) = 0, \]
so \(T = (I - AA_{MN}^\dagger)^*T = (I - AA_{MN}^\dagger)^*M(I - AA_{MN}^\dagger) \), which is positive semi-definite.

Similarly, \(S = (I - A_{MN}^\dagger)N^{-1}(I - A_{MN}^\dagger)^* \) is also positive semi-definite. \(\square \)

Remark 3.1. By Lemma 3.1 we know that
\[\|M(I - AA_{MN}^\dagger)\| = r_1 \text{ and } \|(I - A_{MN}^\dagger)N^{-1}\| = r_2, \] (3.5)
where \(r_1 \) and \(r_2 \) are the largest eigenvalues of \(M(I - AA_{MN}^\dagger) \) and \((I - A_{MN}^\dagger)N^{-1} \) respectively.
Theorem 3.1. Under the conditions of (3.2), (3.3) and (3.6), we have

\[\|A_{MN}^\dagger - A_{MN}^\dagger\| \leq A \cdot \|A_{MN}^\dagger\|, \]

\[\|A_{MN}^\dagger A - A_{MN}^\dagger A\| \leq \frac{r_2\|\delta_N\|}{1 - r_2\|\delta_N\|} \cdot \|A_{MN}^\dagger A\|, \]

\[\|AA_{MN}^\dagger - AA_{MN}^\dagger\| \leq \frac{r_1\|M^{-1}\delta_M\| \cdot \|M^{-1}\|}{1 - \|M^{-1}\delta_M\| (1 + r_1\|M^{-1}\|)} \cdot \|AA_{MN}^\dagger\|. \]
where
\[
A = r_2\|\delta_N\| \cdot (1 - \|M^{-1}\delta_M\|) + r_1(1 - r_2\|\delta_N\|)\|M^{-1}\delta_M\| \cdot \|M^{-1}\|
\]
\[
\frac{r_1\|M^{-1}\delta_M\| \cdot \|M^{-1}\| + r_2\|\delta_N\| (1 - \|M^{-1}\delta_M\| \cdot (1 + r_1\|M^{-1}\|))}{(1 - r_2\|\delta_N\|) [1 - \|M^{-1}\delta_M\| \cdot (1 + r_1\|M^{-1}\|)]}. \tag{3.18}
\]

Proof. By Theorem 2.1 we have
\[
A^\dagger_{MN} = R^{-1}_{M:N,\hat{N}} \cdot A^\dagger_{MN} \cdot L^{-1}_{M,\tilde{M};N}, \tag{3.19}
\]
so
\[
A^\dagger_{MN} - A^\dagger_{MN} = (R^{-1}_{M:N,\hat{N}} - I)A^\dagger_{MN}L^{-1}_{M,\tilde{M};N} + A^\dagger_{MN}(L^{-1}_{M,\tilde{M};N} - I). \tag{3.20}
\]

It is noticed by (3.8) and (3.9) that \(AR_{M:N,\hat{N}} = A = L_{M,\tilde{M};N}A\), and thus
\[
AR_{M:N,\hat{N}}^{-1} = A = L^{-1}_{M,\tilde{M};N}A. \tag{3.21}
\]

It follows from (3.19) and (3.21) that
\[
A^\dagger_{MN}A - A^\dagger_{MN}A = (R^{-1}_{M:N,\hat{N}} - I)A^\dagger_{MN}A, \tag{3.22}
\]
\[
AA^\dagger_{MN} - AA^\dagger_{MN} = AA^\dagger_{MN}(L^{-1}_{M,\tilde{M};N} - I). \tag{3.23}
\]

Norm upper bounds (3.14)–(3.17) then follows from (3.19), (3.20), (3.22), (3.23) and (3.10)–(3.13).

Remark 3.2. The upper bound for \(\|A^\dagger_{MN} - A^\dagger_{MN}\|\) given by (3.15) and (3.18) is somehow complicated, so it is meaningful to replace this upper bound with a simpler one. To this end, we need an elementary result as follows:

Lemma 3.2. Suppose that \(a > 0\) and \(r_1 \geq 0\). Let \(I = \left[0, \frac{1}{1+ar_1}\right)\), and
\[
f(x, y) = \frac{ar_1x + y - (1 + ar_1)xy}{(1 - y)(1 - (1 + ar_1)x)}, \text{ for } x \in I, y \in [0, 1). \tag{3.24}
\]

Then for any \(x_1, x_2 \in I\) and \(y_1, y_2 \in [0, 1]\), we have
\[
f(x_2, y_2) \geq f(x_1, y_1) \text{ whenever } x_1 \leq x_2 \text{ and } y_1 \leq y_2.
\]

Proof. Let \(x \in I\) and \(y \in [0, 1]\). Direct computation yields
\[
\frac{\partial f}{\partial x}(x, y) = \frac{ar_1}{(1 - y)(1 - (1 + ar_1)x)^2} \geq 0,
\]
\[
\frac{\partial f}{\partial y}(x, y) = \frac{1 - x}{(1 - y)^2(1 - (1 + ar_1)x)} > 0,
\]
so the conclusion holds.
Corollary 3.1. Suppose that (3.2) and (3.3) are satisfied, and furthermore

$$\varepsilon (1 + r_1 \|M^{-1}\|) < 1, \text{ where } \varepsilon = \max\{\|M^{-1}\delta_M\|, \ r_2\|\delta_N\|\}.$$
(3.25)

Then

$$\|A_{MN}^t - A_{MN}^t\| \leq \frac{(1 + r_1 \|M^{-1}\|) \varepsilon}{1 - (1 + r_1 \|M^{-1}\|) \varepsilon} \|A_{MN}^t\|.$$
(3.26)

Proof. By assumption $$\varepsilon (1 + r_1 \|M^{-1}\|) < 1,$$ so (3.6) is satisfied. Let $$a = \|M^{-1}\|,$$ $$x_0 = \|M^{-1}\delta_M\|$$ and $$y_0 = r_2\|\delta_N\|$$. Then we may combine (3.15), (3.18) and (3.24) to get

$$\|A_{MN}^t - A_{MN}^t\| \leq f(x_0, y_0) \cdot \|A_{MN}^t\|.$$
(3.27)

By Lemma 3.2 we have

$$f(x_0, y_0) \leq f(\varepsilon, \varepsilon) = \frac{(1 + ar_1) \varepsilon}{1 - (1 + ar_1) \varepsilon}.$$
(3.28)

The upper bound (3.26) then follows from (3.27) and (3.28).

\[\square \]

4. The weighted linear least squares problem

We apply the obtained norm upper bounds to study the weighted linear least squares problem [15]. Let $$A \in \mathbb{C}^{m \times n}$$ be arbitrary, $$M \in \mathbb{C}^{m \times m}$$ and $$N \in \mathbb{C}^{n \times n}$$ be two positive definite matrices. For any $$b \in \mathbb{C}^m$$, let $$x_0 = A_{MN}^t b$$. It is known [15] that for any $$x \in \mathbb{C}^n \setminus \{x_0\},$$

$$\|b - Ax_0\|_M \leq \|b - Ax\|_M,$$

and

$$\|b - Ax_0\|_M = \|b - Ax\|_M \implies \|x_0\|_N < \|x\|_N,$$

which means that $$x_0 = A_{MN}^t b$$ is the unique minimum $$N$$-norm $$M$$-least squares solution to the weighted linear least squares problem

$$\|b - Ax\|_M = \min\{\|b - Az\|_M \mid z \in \mathbb{C}^n\}.$$

When $$M, N$$ and $$b$$ admit some errors, it is meaningful to provide norm estimations for $$\tilde{x}_0 - x_0$$, where $$\tilde{b} = b + \delta_b$$ is a perturbation of $$b$$, and $$\tilde{x}_0 = A_{MN}^t \tilde{b}$$ is the minimum $$\tilde{N}$$-norm $$\tilde{M}$$-least squares solution to the associated perturbation problem. Since

$$\|\tilde{x}_0 - x_0\| \leq \|A_{MN}^t - A_{MN}^t\|b\| + \|A_{MN}^t - A_{MN}^t\| \|\delta_b\| \leq \|A_{MN}^t - A_{MN}^t\| \|b\| + \|A_{MN}^t\| \|\delta_b\|,$$

an upper bound for $$\|\tilde{x}_0 - x_0\|$$ can be derived directly from (3.14), (3.15) and (3.18). Another upper bound for $$\|\tilde{x}_0 - x_0\|$$ can also be given as follows:

Theorem 4.1. Under the conditions of (3.2), (3.3) and (3.6), we have

$$\|\tilde{x}_0 - x_0\| \leq \frac{(1 - \|M^{-1}\delta_M\|) (X\|\delta_b\| + Y\|AA_{MN}^t\|)}{(1 - r_2\|\delta_N\|)} X^2$$

$$+ \frac{r_2\|\delta_N\| \|x_0\| \|A_{MN}^t\|}{1 - r_2\|\delta_N\|}.$$
(4.1)
where $x_0 = A_{MN}^\dagger b$, $\widehat{x}_0 = A_{MN}^\dagger (b + \delta b)$, $r = b - Ax_0$, r_1, r_2 are defined by (3.5), and

$$X = 1 - \|M^{-1}\delta M\| (1 + r_1\|M^{-1}\|), \quad Y = r_1 \|r\| \|M^{-1}\delta M\| \|M^{-1}\|.$$

Proof. Direct computation yields

$$\widehat{x}_0 - x_0 = A_{MN}^\dagger \delta b + A_{MN}^\dagger (AA_{MN}^\dagger - AA_{MN}^\dagger) r - (A_{MN}^\dagger A - A_{MN}^\dagger) x_0,$$

so

$$\|\widehat{x}_0 - x_0\| \leq \|A_{MN}^\dagger\| \cdot \left[\|\delta b\| + \|r\| \|AA_{MN}^\dagger - AA_{MN}^\dagger\|\right]$$

$$+ \|A_{MN}^\dagger A - A_{MN}^\dagger\| \|x_0\|. \quad (4.2)$$

The upper bound (4.1) then follows from (4.2), (3.14), (3.17) and (3.16). \qed

5. **Numerical examples**

In this section, we provide two numerical examples to illustrate the upper bounds obtained in Sections 3 and 4.

Example 5.1. Let $A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$, $M = \text{diag} (2, 1)$, $N = \text{diag} (1, 4)$ and

$$\hat{N} = N + \delta_N = \begin{pmatrix} 1 - \varepsilon & 0 \\ 0 & 4 + \varepsilon \end{pmatrix}$$

for ε small enough, where $\delta_N = \text{diag} (-\varepsilon, \varepsilon)$. It is easy to verify that

$$A_{MN}^\dagger = \begin{pmatrix} (4 + \varepsilon)/(8 - 3\varepsilon) & 0 \\ 2(1 - \varepsilon)/(8 - 3\varepsilon) & 0 \end{pmatrix}, \quad A_{MN}^\dagger = \begin{pmatrix} 0.5 & 0 \\ 0.25 & 0 \end{pmatrix}, \quad (5.1)$$

and since in this case $\delta_M = 0$, the upper bounds given by (3.14)–(3.18), and (4.1) are reduced respectively to

$$\|A_{MN}^\dagger\| \leq \frac{\|A_{MN}^\dagger\|}{1 - r_2\|\delta_N\|}, \quad (5.1)$$

$$\|A_{MN}^\dagger - A_{MN}^\dagger\| \leq \frac{r_2\|\delta_N\|}{1 - r_2\|\delta_N\|} \|A_{MN}^\dagger\|, \quad (5.2)$$

$$\|A_{MN}^\dagger A - A_{MN}^\dagger A\| \leq \frac{r_2\|\delta_N\|}{1 - r_2\|\delta_N\|} \|A_{MN}^\dagger A\|, \quad (5.3)$$

$$\|AA_{MN}^\dagger - AA_{MN}^\dagger\| = 0, \quad (5.4)$$

$$\|\widehat{x}_0 - x_0\| \leq \|\delta_b\| \|A_{MN}^\dagger\| + r_2\|\delta_N\| \|x_0\| \|A_{MN}^\dagger A\|. \quad (5.5)$$

Table 1. Numerical values of the upper bound (5.1)

<table>
<thead>
<tr>
<th>ε</th>
<th>$|A_{MN}^\dagger|$</th>
<th>upper bound (5.1)</th>
<th>relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-4}</td>
<td>0.58122224018800</td>
<td>0.59628479399994</td>
<td>2.5386 %</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>0.56112821284186</td>
<td>0.56253282452825</td>
<td>0.2503 %</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>0.55922677429243</td>
<td>0.55936659849901</td>
<td>0.0250 %</td>
</tr>
</tbody>
</table>
Table 2. Numerical values of the upper bound (5.2)

<table>
<thead>
<tr>
<th>ε</th>
<th>(| A^t_{M\hat{N}} - A^t_{MN} |)</th>
<th>upper bound (5.2)</th>
<th>relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>0.03629980482954</td>
<td>0.03726779962500</td>
<td>2.6667%</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>0.00350700749294</td>
<td>0.00351583015330</td>
<td>0.2516%</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>3.4952 × 10^{-4}</td>
<td>3.4960 × 10^{-4}</td>
<td>0.0250%</td>
</tr>
</tbody>
</table>

Table 3. Numerical values of the upper bound (5.3)

<table>
<thead>
<tr>
<th>ε</th>
<th>(| A^t_{M\hat{N}} A - A^t_{MN} A |)</th>
<th>upper bound (5.3)</th>
<th>relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>0.08116883116883</td>
<td>0.08333333333333</td>
<td>2.6667%</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>0.00784190715182</td>
<td>0.00786163522013</td>
<td>0.2516%</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>7.8154 × 10^{-4}</td>
<td>7.8174 × 10^{-4}</td>
<td>0.0250%</td>
</tr>
</tbody>
</table>

Table 4. Numerical values of the upper bound (5.5) \(\delta_0 = (1/25, 4)^T, \delta_0 = (2\varepsilon, 0)^T \)

<table>
<thead>
<tr>
<th>ε</th>
<th>(| \hat{x}_0 - x_0 |)</th>
<th>upper bound (5.5)</th>
<th>relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>0.11723791748695</td>
<td>0.12112034878124</td>
<td>3.3116%</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>0.01130784521208</td>
<td>0.01142644799823</td>
<td>1.0489%</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>0.00112690300346</td>
<td>0.00113621340320</td>
<td>0.8262%</td>
</tr>
</tbody>
</table>

Example 5.2. Let \(A = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} \), \(a = b = 8 \), \(M = \text{diag} (a, b) \), \(\hat{N} = N = \text{diag} (1, 4) \) and \(\delta_M = \begin{pmatrix} -\varepsilon & 0 \\ 0 & \varepsilon \end{pmatrix} \) for \(\varepsilon \) small enough. It is easy to verify that

\[
A^t_{M\hat{N}} = \begin{pmatrix} \frac{a-\varepsilon}{a+4\varepsilon+3\varepsilon} & \frac{2(b+\varepsilon)}{a+4\varepsilon+3\varepsilon} \\ 0 & \varepsilon \end{pmatrix}, \quad A^t_{MN} = \begin{pmatrix} \frac{a}{a+16} & \frac{2b}{a+16} \\ 0 & 0 \end{pmatrix},
\]

and since in this case \(\delta_N = 0 \), the upper bounds given by (3.14)–(3.18), and (4.1) are reduced respectively to

\[
\| A^t_{M\hat{N}} \| \leq \frac{(1 - \| M^{-1}\delta_M \|) \cdot \| A^t_{MN} \|}{1 - \| M^{-1}\delta_M \| (1 + r_1\| M^{-1} \|)}, \quad (5.6)
\]
\[
\| A^t_{M\hat{N}} - A^t_{MN} \| \leq \frac{r_1\| M^{-1}\delta_M \| \cdot \| M^{-1} \|}{1 - \| M^{-1}\delta_M \| (1 + r_1\| M^{-1} \|)} \| A^t_{MN} \|, \quad (5.7)
\]
\[
\| A^t_{M\hat{N}} A - A^t_{MN} A \| = 0, \quad (5.8)
\]
\[
\| AA^t_{M\hat{N}} - AA^t_{MN} \| \leq \frac{r_1\| M^{-1}\delta_M \| \cdot \| M^{-1} \|}{1 - \| M^{-1}\delta_M \| (1 + r_1\| M^{-1} \|)} \| AA^t_{MN} \|, \quad (5.9)
\]
\[
\| \hat{x}_0 - x_0 \| \leq \frac{(1 - \| M^{-1}\delta_M \|) \left(X\| \delta_0 \| + Y\| AA^t_{MN} \| \right)}{X^2} \| A^t_{MN} \|. \quad (5.10)
\]
Table 5. Numerical values of the upper bound (5.6)

<table>
<thead>
<tr>
<th>ε</th>
<th>$|A^\dagger_{MN}|$</th>
<th>upper bound (5.6)</th>
<th>relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>0.44723562396299</td>
<td>0.45294710313457</td>
<td>1.2771 %</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>0.44721381877167</td>
<td>0.4477401353943</td>
<td>0.1253 %</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>0.44721359773569</td>
<td>0.44726951117832</td>
<td>0.0125 %</td>
</tr>
</tbody>
</table>

Table 6. Numerical values of the upper bound (5.7)

<table>
<thead>
<tr>
<th>ε</th>
<th>$|A^\dagger_{MN} - A^\dagger_{MN}|$</th>
<th>upper bound (5.7)</th>
<th>relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>0.00443884462035</td>
<td>0.00573350763461</td>
<td>29.1667 %</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>4.4688 \times 10^{-4}</td>
<td>5.6042 \times 10^{-4}</td>
<td>25.4073 %</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>4.4718 \times 10^{-4}</td>
<td>5.5916 \times 10^{-4}</td>
<td>25.0406 %</td>
</tr>
</tbody>
</table>

Table 7. Numerical values of the upper bound (5.9)

<table>
<thead>
<tr>
<th>ε</th>
<th>$|AA^\dagger_{MN} - AA^\dagger_{MN}|$</th>
<th>upper bound (5.9)</th>
<th>relative error</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>0.00992555831266</td>
<td>0.01282051282051</td>
<td>29.1667 %</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>9.9925 \times 10^{-4}</td>
<td>0.00125313283208</td>
<td>25.4073 %</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>9.9992 \times 10^{-4}</td>
<td>1.2503 \times 10^{-4}</td>
<td>25.0406 %</td>
</tr>
</tbody>
</table>

Table 8. Numerical values of the upper bound (5.10) $b = (1/25, 25)^T$, $A_{b} = (0.1\varepsilon, 0)^T$

| $\vareferences

References

