CONTROLLABILITY OF THE KORTEWEG-DE VRIES-BURGERS EQUATION*

Hang Zhou ${ }^{1}$ and Yuecai Han ${ }^{2, \dagger}$

Abstract

In this paper, we investigate the controllability of the Kortewegde Vries-Burgers equation on a periodic domain $\mathbb{T}=\mathbb{R} /(2 \pi \mathbb{Z})$. With the aid of the classical duality approach and a fixed-point argument, the local exact controllability is established.

Keywords Korteweg-de Vries-Burgers equation, controllability, periodic domain.

MSC(2010) 93B05, 35Q53.

1. Introduction

The Korteweg-de Vries-Burgers (KdV-B) equation

$$
\begin{cases}u_{t}+u_{x x x}-u_{x x}+u u_{x}=0, & x \in \mathbb{T}, t>0 \tag{1.1}\\ u(x, 0)=u_{0}(x), & x \in \mathbb{T}\end{cases}
$$

has been derived as a model for the propagation of weakly nonlinear dispersive long waves in some physical contexts when dissipative effects occur (see [10]). The well-posedness of (1.1) has been studied in [7-9]. In these works, the existence of the solution is obtained by performing a fixed point argument on the corresponding integral equation.

As far as we know, the discussion of the KdV-B equation is mainly about the well-posedness. In this paper, we will study the KdV-B equation from a control point of view with a forcing term $h=h(x, t)$ added to the equation as a control input:

$$
\begin{equation*}
u_{t}+u_{x x x}-u_{x x}+u u_{x}=h, \quad x \in \mathbb{T}, t \in \mathbb{R}^{+} \tag{1.2}
\end{equation*}
$$

It is natural to propose the following problem:
Problem. For any time $T>0$, any two states u_{0} and u_{1} in a certain space, can one find an appropriate control h that drives the solution of (1.2) from u_{0} at $t=0$ to u_{1} at $t=T$?

The problems were first investigated by Russel and Zhang in [13, 14] (also in [4]) for the Korteweg-de Vries (KdV) equation

$$
\begin{equation*}
u_{t}+u_{x x x}+u u_{x}=h, \quad x \in \mathbb{T}, t \in \mathbb{R}^{+} . \tag{1.3}
\end{equation*}
$$

[^0]They obtained that there exists a control h which is supported in a given open set $\omega \subset \mathbb{T}$ such that (1.3) is globally exactly controllable. The exact controllability of nonlinear third order dispersion equation with infinite distributed delay is obtained in [5].

However, since the linear KdV-B equation possesses a regularizing effect, the exact controllability may not hold with a localized control. Therefore, we consider a control acts on the entire domain \mathbb{T}.

Throughout the paper, for any $s \in \mathbb{R}$,

$$
H_{0}^{s}(\mathbb{T})=\left\{u \in H^{s}(\mathbb{T}) ;[u]:=\frac{1}{2 \pi} \int_{\mathbb{T}} u(x) d x=0\right\}
$$

Let $(u, v)_{0}=\int_{\mathbb{T}} u(x) v(x) d x$ denote the usual scalar product in $L^{2}(\mathbb{T})$ and $(u, v)_{s}=$ $\left(\left(1-\partial_{x}^{2}\right)^{\frac{s}{2}} u,\left(1-\partial_{x}^{2}\right)^{\frac{s}{2}} v\right)_{0}$ denote the scalar product in $H^{s}(\mathbb{T})$ with corresponding norm $\|u\|_{s}=(u, u)_{s}^{\frac{1}{2}}$.

The main results in this paper are stated as follows:
Theorem 1.1. Let $s \geq 0, T>0$ be given. There exists a $\delta>0$ such that for any $u_{0}, u_{1} \in H_{0}^{s}(\mathbb{T})$ satisfying

$$
\left\|u_{0}\right\|_{s} \leq \delta, \quad\left\|u_{1}\right\|_{s} \leq \delta
$$

one may find a control $h \in L^{2}\left(0, T ; H_{0}^{s-1}(\mathbb{T})\right)$ such that (1.2) admits a unique solution $\left.u \in C\left([0, T], H_{0}^{s}(\mathbb{T})\right) \cap L^{2}\left(0, T, H_{0}^{s+1}(\mathbb{T})\right)\right)$ for which $u(0)=u_{0}$ and $u(T)=$ u_{1}.

The rest of this paper is organized as follows. In Section 2 we get the wellposedness of system (1.1). Section 3 is devoted to the exact controllability.

2. Well-posedness

In this section, attention will be given to the well-posedness of (1.1). The wellposedness of the KdV-B equation was investigated in many articles ([7-9]). In these works, the existence of the solution is obtained by performing a fixed point argument on the corresponding integral equation. One of the main points is to find a "good" function space in which the fixed point argument will be performed. For the KdV equation, J. Bourgain [2] introduced new function spaces, adapted to the linear operator $\partial_{t}+\partial_{x}^{3}$, for which there are good "bilinear" estimates for the nonlinear term $u u_{x}$. Using these spaces, Bourgain was able to establish the well-posedness of KdV equation in the spatially periodic setting. Then this method was applied to the KdV -B equation, and obtained the well-posedness of (1.1) in $H_{0}^{s}(\mathbb{T})(s>-1)$. Since we only investigate the well-posedness of (1.1) in $H_{0}^{s}(\mathbb{T})(s \geq 0)$, there is no need to introduce corresponding Bourgain spaces.

2.1. Linear system

We first consider the inhomogeneous linear system

$$
\begin{cases}u_{t}+u_{x x x}-u_{x x}=f, & x \in \mathbb{T}, t>0 \tag{2.1}\\ u(x, 0)=u_{0}(x), & x \in \mathbb{T} .\end{cases}
$$

Let $s \in \mathbb{R}$ and let A be the linear operator defined by

$$
A u=-u_{x x x}+u_{x x}
$$

with the domain $\mathcal{D}(A)=H_{0}^{s+3}(\mathbb{T}) \subset H_{0}^{s}(\mathbb{T})$. Clearly, A is densely defined closed operator in $H_{0}^{s}(\mathbb{T})$.

For any $u \in \mathcal{D}(A)$, it is easy to deduce that

$$
\begin{aligned}
(A u, u)_{s} & =\left(-u_{x x x}+u_{x x}, u\right)_{s} \\
& =-\left(\left(1-\partial_{x}^{2}\right)^{\frac{s}{2}} \partial_{x}^{3} u,\left(1-\partial_{x}^{2}\right)^{\frac{s}{2}} u\right)_{0}+\left(\left(1-\partial_{x}^{2}\right)^{\frac{s}{2}} \partial_{x}^{2} u,\left(1-\partial_{x}^{2}\right)^{\frac{s}{2}} u\right)_{0} \\
& =-\left\|u_{x}\right\|_{s}^{2} \\
& \leq 0
\end{aligned}
$$

Similarly, for any $v \in \mathcal{D}\left(A^{*}\right),\left(A^{*} v, v\right)_{s} \leq 0$, where $A^{*} v=v_{x x x}+v_{x x}$ and $\mathcal{D}\left(A^{*}\right)=H_{0}^{s+3}(\mathbb{T})$. This implies that both A and its adjoint A^{*} are dissipative. Thus A generates a semigroup $\{S(t)\}_{t \geqq 0}$ in $H_{0}^{s}(\mathbb{T})$ by [11].

For $s \geq 0$ and $T>0$. Let $Y_{s, I}=C\left(\overline{\bar{I}} ; H_{0}^{s}(\mathbb{T})\right) \cap L^{2}\left(I ; H_{0}^{s+1}(\mathbb{T})\right)$ be endowed with the norm

$$
\|v\|_{Y_{s, I}}=\|v\|_{L^{\infty}\left(I ; H^{s}(\mathbb{T})\right)}+\|v\|_{L^{2}\left(I ; H^{s+1}(\mathbb{T})\right)} .
$$

For simplicity, we denote $Y_{s, I}$ by $Y_{s, T}$ if $I=(0, T)$.
Lemma 2.1. For any $T>0, u_{0} \in H_{0}^{s}(\mathbb{T})$ and $f \in L^{2}\left(0, T ; H_{0}^{s-1}(\mathbb{T})\right)$, the solution of (2.1) satisfies

$$
\begin{equation*}
\|u\|_{Y_{s, T}} \leq C\left(\left\|u_{0}\right\|_{s}+\|f\|_{L^{2}\left(0, T ; H_{0}^{s-1}(\mathbb{T})\right)}\right) \tag{2.2}
\end{equation*}
$$

where C is independent of T.
Proof. To have enough regularity in the following computations, we assume that $u_{0} \in H_{0}^{s+3}(\mathbb{T})$ and that $f \in L^{2}\left(0, T ; H_{0}^{s+3}(\mathbb{T})\right)$, so that the solution u of (2.1) satisfies $u \in C\left([0, T] ; H_{0}^{s+3}(\mathbb{T})\right) \cap C^{1}\left([0, T] ; H_{0}^{s}(\mathbb{T})\right)$.

Taking the scalar product of each term by u in $H_{0}^{s}(\mathbb{T})$ results in

$$
\begin{aligned}
\frac{1}{2}\|u(\cdot, t)\|_{s}^{2}+\int_{0}^{t}\left\|u_{x}\right\|_{s}^{2} d \tau & =\frac{1}{2}\left\|u_{0}\right\|_{s}^{2}+\int_{0}^{t}(f, u)_{s} d \tau \\
& \leq \frac{1}{2}\left\|u_{0}\right\|_{s}^{2}+\int_{0}^{t}\|f\|_{s-1}\|u\|_{s+1} d \tau \\
& \leq \frac{1}{2}\left\|u_{0}\right\|_{s}^{2}+C \int_{0}^{t}\|f\|_{s-1}\left\|u_{x}\right\|_{s} d \tau \\
& \leq \frac{1}{2}\left\|u_{0}\right\|_{s}^{2}+C \int_{0}^{t}\|f\|_{s-1}^{2} d \tau+\frac{1}{2} \int_{0}^{t}\left\|u_{x}\right\|_{s}^{2} d \tau
\end{aligned}
$$

Consequently,

$$
\|u(\cdot, t)\|_{s}^{2}+\int_{0}^{t}\left\|u_{x}\right\|_{s}^{2} d \tau \leq C\left(\left\|u_{0}\right\|_{s}^{2}+\int_{0}^{t}\|f\|_{s-1}^{2} d \tau\right)
$$

Taking supremum in $t \in(0, T)$, it follows that

$$
\|u\|_{L^{\infty}\left(0, T ; H^{s}(\mathbb{T})\right)}^{2}+\|u\|_{L^{2}\left(0, T ; H^{s+1}(\mathbb{T})\right)}^{2} \leq C\left(\left\|u_{0}\right\|_{s}^{2}+\|f\|_{L^{2}\left(0, T ; H^{s-1}(\mathbb{T})\right)}^{2}\right)
$$

This is also true for $u_{0} \in H_{0}^{s}(\mathbb{T})$ and $f \in L^{2}\left(0, T ; H_{0}^{s-1}(\mathbb{T})\right)$.

2.2. Nonlinear system

We now present our first well-posedness result for (1.1).
Proposition 2.1. For any $T>0$ and any $u_{0} \in H_{0}^{0}(\mathbb{T})$, (1.1) admits a unique solution $u \in Y_{0, T}$ which also satisfies

$$
\begin{equation*}
\|u\|_{Y_{0, T}} \leq C\left\|u_{0}\right\|_{0}, \tag{2.3}
\end{equation*}
$$

where C is independent of T. Moreover, the corresponding solution map is locally Lipschitz continuous: for any $u_{0}, v_{0} \in H_{0}^{0}(\mathbb{T})$, the corresponding solutions u and v of (1.1) satisfy

$$
\begin{equation*}
\|u-v\|_{Y_{0, T}} \leq \alpha_{0, T}\left(\left\|u_{0}\right\|_{0}+\left\|v_{0}\right\|_{0}\right)\left\|u_{0}-v_{0}\right\|_{0} \tag{2.4}
\end{equation*}
$$

where $\alpha_{0, T}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a nondecreasing continuous function.
Proof. We borrow some ideas from [12]. For given u_{0}, define the map Γ on the closed ball $B_{\theta, R}=\left\{u \in Y_{0, \theta}:\|u\|_{Y_{0, \theta}} \leq R\right\}$ of $Y_{0, \theta}$ by

$$
\Gamma(u)=S(t) u_{0}-\int_{0}^{t} S(t-\tau)\left(u u_{x}\right)(\tau) d \tau
$$

Notice Lemma 2.1 and the fact that

$$
\begin{aligned}
\int_{0}^{\theta}\|u\|_{L^{\infty}(\mathbb{T})}^{2} d \tau & \leq C \int_{0}^{\theta}\|u\|_{1}\|u\|_{0} d \tau \\
& \leq C \theta^{\frac{1}{2}}\|u\|_{L^{\infty}\left(0, \theta ; L^{2}(\mathbb{T})\right)}\|u\|_{L^{2}\left(0, \theta ; H^{1}(\mathbb{T})\right)}
\end{aligned}
$$

There exist constants C_{1}, C_{2}, such that

$$
\begin{aligned}
\|\Gamma(u)\|_{Y_{0, \theta}} & \leq C_{1}\left\|u_{0}\right\|_{0}+C_{2} \theta^{\frac{1}{4}}\|u\|_{Y_{0, \theta}}^{2} \\
\|\Gamma(u)-\Gamma(v)\|_{Y_{0, \theta}} & \leq C_{2} \theta^{\frac{1}{4}}\|u+v\|_{Y_{0, \theta}}\|u-v\|_{Y_{0, \theta}}
\end{aligned}
$$

for any $u, v \in B_{\theta, R}$.
Choosing $R=2 C_{1}\left\|u_{0}\right\|_{0}$ and $\theta>0$ so that $2 C_{2} \theta^{\frac{1}{4}} R \leq \frac{1}{2}$, then

$$
\|\Gamma(u)\|_{Y_{0, \theta}} \leq R \quad \text { and } \quad\|\Gamma(u)-\Gamma(v)\|_{Y_{0, \theta}} \leq \frac{1}{2}\|u-v\|_{Y_{0, \theta}}
$$

for any $u, v \in B_{\theta, R}$. Thus Γ is a contractive mapping on $B_{\theta, R}$. Its fixed point $u=\Gamma(u)$ is the unique solution of (1.1).

Multiply both sides of the first equation in (1.1) by u and integrate with respect x over the interval \mathbb{T}. An integration by parts leads to

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\|u(\cdot, t)\|_{0}^{2}+\left\|u_{x}(\cdot, t)\right\|_{0}^{2}=0 \tag{2.5}
\end{equation*}
$$

This implies

$$
\sup _{0 \leq t \leq \theta}\|u(\cdot, t)\|_{0} \leq\left\|u_{0}\right\|_{0}
$$

By the standard extension argument, one may extend θ to T and obtain a nondecreasing continuous function $\alpha_{0, T}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
\begin{equation*}
\|u\|_{Y_{0, T}} \leq \alpha_{0, T}\left(\left\|u_{0}\right\|_{0}\right)\left\|u_{0}\right\|_{0} . \tag{2.6}
\end{equation*}
$$

Similarly, we can obtain (2.4).
On the other hand, integrate (2.5) with respect time over the interval $(0, t)$, then take supremum in $t \in(0, T)$, we can obtain (2.3) which is better than (2.6).

Next, we show that (1.1) is well-posed in $Y_{3, T}$.
Proposition 2.2. For any $u_{0} \in H_{0}^{3}(\mathbb{T})$, (1.1) admits a unique solution $u \in Y_{3, T}$. Moreover, there exists a nondecreasing continuous function $\alpha_{3, T}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
\|u\|_{Y_{3, T}} \leq \alpha_{3, T}\left(\left\|u_{0}\right\|_{0}\right)\left\|u_{0}\right\|_{3} .
$$

Proof. By Proposition 2.1, (1.1) admits a unique solution $u \in Y_{0, T}$, we just need to show further that $u \in Y_{3, T}$. For this purpose, let $v=u_{t}$, then

$$
\begin{cases}v_{t}+v_{x x x}-v_{x x}+(u v)_{x}=0, & x \in \mathbb{T}, t>0, \tag{2.7}\\ v(x, 0)=v_{0}(x), & x \in \mathbb{T},\end{cases}
$$

where $v_{0}=-u_{0}^{\prime \prime \prime}+u_{0}^{\prime \prime}-u_{0} u_{0}^{\prime} \in H_{0}^{0}(\mathbb{T})$.
Proceeding as in the proof of Proposition 2.1, we see that (2.7) admits a unique solution $v \in Y_{0, T}$. Moreover

$$
\begin{equation*}
\|v\|_{Y_{0, T}} \leq \alpha_{0, T}\left(\left\|u_{0}\right\|_{0}\right)\left\|v_{0}\right\|_{0} . \tag{2.8}
\end{equation*}
$$

Now we claim that (2.8) holds.
In fact, it is not difficult that

$$
\begin{aligned}
\|u\|_{L^{\infty}\left(0, T ; H^{1}(\mathbb{T})\right)} & \leq C\|u\|_{H^{1}\left(0, T ; H^{1}(\mathbb{T})\right)} \\
& \leq C\left(\|u\|_{L^{2}\left(0, T ; H^{1}(\mathbb{T})\right)}+\|v\|_{L^{2}\left(0, T ; H^{1}(\mathbb{T})\right)}\right)
\end{aligned}
$$

and

$$
\left\|u_{x}\right\|_{0}^{2}=\left(u_{x}, u_{x}\right)_{0}=-\left(u, u_{x x}\right)_{0} \leq\|u\|_{0}\left\|u_{x x}\right\|_{0}
$$

Then for any $\varepsilon>0$,

$$
\begin{aligned}
\left\|u u_{x}\right\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)} & \leq\|u\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)}\left\|u_{x}\right\|_{L^{\infty}\left(0, T ; L^{\infty}(\mathbb{T})\right)} \\
& \leq\|u\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)}\left\|u_{x}\right\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)}^{\frac{1}{2}}\left\|u_{x x}\right\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)}^{\frac{1}{2}} \\
& \leq\|u\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)}^{\frac{5}{4}}\left\|u_{x x}\right\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)}^{\frac{3}{4}} \\
& \leq \varepsilon\left\|u_{x x}\right\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)}+C(\varepsilon)\|u\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)}^{5} .
\end{aligned}
$$

Therefore from the equation $v=-u_{x x x}+u_{x x}-u u_{x}$, we have

$$
\begin{align*}
\|u\|_{L^{\infty}\left(0, T ; H^{2}(\mathbb{T})\right)} \leq & C\left\|u_{x}\right\|_{L^{\infty}\left(0, T ; H^{1}(\mathbb{T})\right)} \\
\leq & C\left(\left\|u_{x}-u\right\|_{L^{\infty}\left(0, T ; H^{1}(\mathbb{T})\right)}+\|u\|_{L^{\infty}\left(0, T ; H^{1}(\mathbb{T})\right)}\right) \\
\leq & C\left(\left\|u_{x x x}-u_{x x}\right\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)}+\|u\|_{L^{\infty}\left(0, T ; H^{1}(\mathbb{T})\right)}\right) \\
\leq & C\left(\left\|v+u u_{x}\right\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)}+\|u\|_{L^{\infty}\left(0, T ; H^{1}(\mathbb{T})\right)}\right) \\
\leq & C\left(\|v\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)}+\|u\|_{L^{\infty}\left(0, T ; H^{1}(\mathbb{T})\right)}\right. \\
& \left.+\varepsilon\left\|u_{x x}\right\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)}+C(\varepsilon)\|u\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)}^{5}\right) . \tag{2.9}
\end{align*}
$$

Choosing $\varepsilon=\frac{1}{2 C}$, according to (2.3) and (2.8), there exists a nondecreasing continuous function $\widetilde{\alpha}_{3, T}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
\|u\|_{L^{\infty}\left(0, T ; H^{2}(\mathbb{T})\right)} \leq \widetilde{\alpha}_{3, T}\left(\left\|u_{0}\right\|_{0}\right)\left\|u_{0}\right\|_{3}
$$

This implies

$$
\begin{align*}
\left\|u u_{x}\right\|_{L^{2}\left(0, T ; H^{1}(\mathbb{T})\right)} & \leq C\|u\|_{L^{2}\left(0, T ; H^{1}(\mathbb{T})\right)}\|u\|_{L^{\infty}\left(0, T ; H^{2}(\mathbb{T})\right)} \tag{2.10}\\
& \leq C\left\|u_{0}\right\|_{0} \widetilde{\alpha}_{3, T}\left(\left\|u_{0}\right\|_{0}\right)\left\|u_{0}\right\|_{3} .
\end{align*}
$$

Computations similar (but more complicated) to those in (2.9) give

$$
\|u\|_{L^{\infty}\left(0, T ; H^{3}(\mathbb{T})\right)} \leq C\left(\|v\|_{L^{\infty}\left(0, T ; L^{2}(\mathbb{T})\right)}+\|u\|_{L^{\infty}\left(0, T ; H^{2}(\mathbb{T})\right)}^{9}+\|u\|_{L^{\infty}\left(0, T ; H^{2}(\mathbb{T})\right)}\right)
$$

Using the same argument as in (2.9), we get

$$
\|u\|_{L^{2}\left(0, T ; H^{4}(\mathbb{T})\right)} \leq C\left(\|v\|_{L^{2}\left(0, T ; H^{1}(\mathbb{T})\right)}+\left\|u u_{x}\right\|_{L^{2}\left(0, T ; H^{1}(\mathbb{T})\right)}+\|u\|_{L^{\infty}\left(0, T ; H^{3}(\mathbb{T})\right)}\right)
$$

Consequently, there exists a nondecreasing continuous function $\alpha_{3, T}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that

$$
\|u\|_{L^{\infty}\left(0, T ; H^{3}(\mathbb{T})\right)}+\|u\|_{L^{2}\left(0, T ; H^{4}(\mathbb{T})\right)} \leq \alpha_{3, T}\left(\left\|u_{0}\right\|_{0}\right)\left\|u_{0}\right\|_{3} .
$$

Finally, we can state the main result in this section.
Theorem 2.1. For any $u_{0} \in H_{0}^{s}(\mathbb{T})$, (1.1) admits a unique solution $u \in Y_{s, T}$. Moreover, there exists a nondecreasing continuous function $\alpha_{s, T}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
\|u\|_{Y_{s, T}} \leq \alpha_{s, T}\left(\left\|u_{0}\right\|_{0}\right)\left\|u_{0}\right\|_{s} .
$$

Proof. The cases $s=0$ and $s=3$ have been proved in Proposition 2.1 and Proposition 2.2. The cases of $0<s<3$ follows by (2.4) and the nonlinear interpolation theory [1]. The other cases of s can be proved similarly.

3. Controllability

In this section, we consider the exact controllability of the KdV-B equation

$$
\begin{cases}u_{t}+u_{x x x}-u_{x x}+u u_{x}=h, & x \in \mathbb{T}, t>0, \tag{3.1}\\ u(x, 0)=u_{0}(x), & x \in \mathbb{T} .\end{cases}
$$

The exact controllability of the linear system can be obtained by the classical duality approach. Then by a fixed-point argument, we get the exact controllability of the nonlinear system.

First, let us consider the linear system

$$
\begin{cases}u_{t}+u_{x x x}-u_{x x}=h, & x \in \mathbb{T}, t>0 \tag{3.2}\\ u(x, 0)=u_{0}(x), & x \in \mathbb{T} .\end{cases}
$$

Proposition 3.1. Let $s \geq 0, T>0$ be given. For any $u_{0}, u_{1} \in H_{0}^{s}(\mathbb{T})$, there exists a control input $h \in L^{2}\left(0, T ; H_{0}^{s-1}(\mathbb{T})\right)$ such that (3.2) admits a solution $u \in Y_{s, T}$ satisfying

$$
u(x, 0)=u_{0}(x), u(x, T)=u_{1}(x)
$$

for any $x \in \mathbb{T}$.
Proof. According to Lemma 2.1, solution of (3.2) belongs to $Y_{s, T}$ for $u_{0} \in H_{0}^{s}(\mathbb{T})$ and $h \in L^{2}\left(0, T ; H_{0}^{s-1}(\mathbb{T})\right)$.

Motivated by [6], we consider the adjoint system

$$
\begin{cases}-v_{t}-v_{x x x}-v_{x x}=0, & x \in \mathbb{T}, t>0, \tag{3.3}\\ v(x, T)=v_{T}(x), & x \in \mathbb{T} .\end{cases}
$$

First we claim that for any $T>0$, the system (3.3) admits a unique solution $v \in Y_{-s, T}$.

In fact, let $\widetilde{v}(x, t)=v(x, T-t)$, then \widetilde{v} solves

$$
\begin{cases}\widetilde{v}_{t}-\widetilde{v}_{x x x}-\widetilde{v}_{x x}=0, & x \in \mathbb{T}, t>0 \\ \widetilde{v}(x, 0)=v_{T}(x), & x \in \mathbb{T}\end{cases}
$$

Similar as in Section 2, the linear operator \widetilde{A} defined by $\widetilde{A} v=v_{x x x}+v_{x x}$ also generates a semigroup in $H_{0}^{-s}(\mathbb{T})$. Thus for any $v_{T} \in H_{0}^{-s}(\mathbb{T}), v \in C\left([0, T] ; H_{0}^{-s}(\mathbb{T})\right)$. Moreover, by a similar method as in Lemma 2.1, we have

$$
\begin{equation*}
\|v\|_{Y_{-s, T}} \leq C\left\|v_{T}\right\|_{-s} \tag{3.4}
\end{equation*}
$$

Taking the duality product of each term of (3.3) by v yields

$$
\left.\langle v, u\rangle_{-s, s}\right|_{0} ^{T}=\int_{0}^{T}\langle v, h\rangle_{-s+1, s-1} d t
$$

where $\langle\cdot, \cdot\rangle_{-s, s}$ denotes the duality pairing $\langle\cdot, \cdot\rangle_{H_{0}^{-s}(\mathbb{T}), H_{0}^{s}(\mathbb{T})}$. Without loss of generality, we can assume that $u_{0}=0$. Following the classical duality approach, it is sufficient to prove the following observability inequality

$$
\begin{equation*}
\left\|v_{T}\right\|_{-s}^{2} \leq C \int_{0}^{T}\|v\|_{-s+1}^{2} d t \tag{3.5}
\end{equation*}
$$

Taking the scalar product of each term of by $t v$ in $H_{0}^{-s}(\mathbb{T})$ results in

$$
\frac{T}{2}\left\|v_{T}\right\|_{-s}^{2}=\frac{1}{2} \int_{0}^{T}\|v\|_{-s}^{2} d t+\int_{0}^{T} t\left\|v_{x}\right\|_{-s}^{2} d t
$$

Combined with the Poincaré inequality, this gives (3.5).
Now we can obtain the local exact controllability of the nonlinear system (3.1).
Proof of Theorem 1.1. From Proposition 3.1, by a classical functional analysis argument [3], one can construct a continuous operator $\Phi: H_{0}^{s}(\mathbb{T}) \rightarrow L^{2}\left(0, T ; H_{0}^{s-1}(\mathbb{T})\right)$ such that for any $u_{1} \in H_{0}^{s}(\mathbb{T})$, the solution u of (3.2) associated with $u_{0}=0$ and $h=\Phi\left(u_{1}\right)$ satisfies $u(T)=u_{1}$. Let us denote by $W(h)$ the corresponding trajectory. We know from Lemma 2.1 that W is continuous from $L^{2}\left(0, T ; H_{0}^{s-1}(\mathbb{T})\right)$ into $Y_{s, T}$.

Pick any $u_{0}, u_{1} \in H_{0}^{s}(\mathbb{T})$ satisfying $\left\|u_{0}\right\|_{s} \leq \delta, \quad\left\|u_{1}\right\|_{s} \leq \delta$ with δ to be determined. For any $u \in Y_{s, T}$, we set

$$
\omega(u)=-\int_{0}^{T} S(T-\tau)\left(u u_{x}\right)(\tau) d \tau
$$

It is easy to deduce that

$$
\begin{aligned}
\|\omega(u)\|_{s} & \leq C\left\|\int_{0}^{t} S(t-\tau)\left(u u_{x}\right)(\tau) d \tau\right\|_{Y_{s, T}} \leq C\|u\|_{Y_{s, T}}^{2} \\
\|\omega(u)-\omega(v)\|_{s} & \leq C\left\|\int_{0}^{t} S(t-\tau)\left(u u_{x}-v v_{x}\right)(\tau) d \tau\right\|_{Y_{s, T}} \\
& \leq C\|u+v\|_{Y_{s, T}}\|u-v\|_{Y_{s, T}}
\end{aligned}
$$

If we choose $h=\Phi\left(u_{1}-S(T) u_{0}-\omega(u)\right)$, then

$$
S(t) u_{0}-\int_{0}^{t} S(t-\tau)\left(u u_{x}\right)(\tau) d \tau+W(h)(t)= \begin{cases}u_{0}, & \text { if } t=0 \\ u_{1}, & \text { if } t=T\end{cases}
$$

We are led to consider the nonlinear map

$$
\Gamma(u)=S(t) u_{0}-\int_{0}^{t} S(t-\tau)\left(u u_{x}\right)(\tau) d \tau+W(h)(t)
$$

Let

$$
B_{R}=\left\{u \in Y_{s, T}:\|u\|_{Y_{s, T}} \leq R\right\}
$$

For all $u, v \in B_{R}$,

$$
\begin{aligned}
& \|\Gamma(u)\|_{Y_{s, T}} \\
\leq & C\left(\left\|u_{0}\right\|_{s}+\left\|u u_{x}\right\|_{L^{1}\left(0, T ; H^{s}(\mathbb{T})\right)}+\left\|\Phi\left(u_{1}-S(T) u_{0}-\omega(u)\right)\right\|_{L^{2}\left(0, T ; H^{s-1}(\mathbb{T})\right)}\right) \\
\leq & C_{1}\left(\left\|u_{0}\right\|_{s}+\left\|u_{1}\right\|_{s}\right)+C_{2}\|u\|_{Y_{s, T}^{2}} \\
\leq & 2 C_{1} \delta+C_{2} R^{2} \\
& \|\Gamma(u)-\Gamma(v)\|_{Y_{s, T}} \\
\leq & C\|\Phi(\omega(u)-\omega(v))\|_{L^{2}\left(0, T ; H^{s-1}(\mathbb{T})\right)}+\left\|u u_{x}-v v_{x}\right\|_{L^{1}\left(0, T ; H^{s}(\mathbb{T})\right)} \\
\leq & C_{2}\|u+v\|_{Y_{s, T}}\|u-v\|_{Y_{s, T}} \\
\leq & 2 C_{2} R\|u-v\|_{Y_{s, T}} .
\end{aligned}
$$

Picking $R=4 C_{1} \delta$ and $\delta=\left(8 C_{1} C_{2}\right)^{-1}$, we obtain that for u_{0}, u_{1} satisfying $\left\|u_{0}\right\|_{s} \leq \delta,\left\|u_{1}\right\|_{s} \leq \delta$ and $u, v \in B_{R}$ that

$$
\|\Gamma(u)-\Gamma(v)\|_{Y_{s, T}} \leq R, \quad\|\Gamma(u)\|_{Y_{s, T}} \leq \frac{1}{2}\|u-v\|_{Y_{s, T}}
$$

It follows from the contraction mapping theorem that Γ has a unique fixed point u in B_{R}. Then u satisfies (3.1) with $h=\Phi\left(u_{1}-S(T) u_{0}-\omega(u)\right)$ and $u(T)=u_{1}$, as desired.

The proof of Theorem 1.1 is completed.

References

[1] J. Bergh and J. Löfstrom, Interpolation Spaces, An Introduction, SpringerVerlag, New York, 1976.
[2] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, part II: the KdV equation, Geom. Funct. Anal., 3(1993)(3), 209-262.
[3] J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, American Mathematical Society, Providence, 136(2007).
[4] C. Laurent, L. Rosier and B. Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Comm. Partial Differential Equations, 35(2010)(4), 707-744.
[5] M. Li and H. Wang, Controllability of nonlinear third order dispersion equation with distributed delay, Journal of Applied Analysis and Computation, $2(2012)(4), 415-421$.
[6] F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain, Trans. Amer. Math. Soc., 367(2015)(7), 4595-4626.
[7] L. Molinet and F. Ribaud, On the low regularity of the Korteweg de VriesBurgers equation, International Mathematics Research Notices, 37(2002), 1979-2005.
[8] L. Molinet and F. Ribaud, The Cauchy problem for dissipative Korteweg de Vries equations in Sobolev spaces of negative order, Indiana Univ. Math. J., $50(2001)(4), 1745-1776$.
[9] L. Molinet and S. Vento, Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case, Trans. Amer. Math. Soc., 365(2013)(1), 123-141.
[10] E. Ott and N. Sudan, Damping of solitary waves, Phys. Fluids, 13(1970)(6), 1432-1434.
[11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983.
[12] L. Rosier and B. Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM J. Control Optim., 45(2006)(3), 927-956.
[13] D. L. Russell and B. Y. Zhang, Controllability and stabilizability of the third order linear dispersion equation on a periodic domain, SIAM J. Control Optim., 31(1993)(3), 659-676.
[14] D. L. Russell and B. Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 348(1996)(9), 36433672.

[^0]: ${ }^{\dagger}$ the corresponding author. Email address: hanyc@jlu.edu.cn(Y. Han)
 ${ }^{1}$ Institute of Mathematics, Jilin University, Qianjin Street 2699, 130012 Changchun, China
 ${ }^{2}$ School of Mathematics, Jilin University, Qianjin Street 2699, 130012 Changchun, China
 *The authors were supported by National Natural Science Foundation of China (No. 11371169), National 973 Project of China (No. 2012CB821200) and RFDP (No. 20120061110002).

