CONTROLLABILITY OF THE KORTEWEG-DE VRIES-BURGERS EQUATION*

Hang Zhou¹ and Yuecai Han^{2,†}

Abstract In this paper, we investigate the controllability of the Kortewegde Vries-Burgers equation on a periodic domain $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$. With the aid of the classical duality approach and a fixed-point argument, the local exact controllability is established.

Keywords Korteweg-de Vries-Burgers equation, controllability, periodic domain.

MSC(2010) 93B05, 35Q53.

1. Introduction

The Korteweg-de Vries-Burgers (KdV-B) equation

$$\begin{cases} u_t + u_{xxx} - u_{xx} + uu_x = 0, & x \in \mathbb{T}, \ t > 0, \\ u(x,0) = u_0(x), & x \in \mathbb{T} \end{cases}$$
(1.1)

has been derived as a model for the propagation of weakly nonlinear dispersive long waves in some physical contexts when dissipative effects occur (see [10]). The well-posedness of (1.1) has been studied in [7–9]. In these works, the existence of the solution is obtained by performing a fixed point argument on the corresponding integral equation.

As far as we know, the discussion of the KdV-B equation is mainly about the well-posedness. In this paper, we will study the KdV-B equation from a control point of view with a forcing term h = h(x, t) added to the equation as a control input:

$$u_t + u_{xxx} - u_{xx} + uu_x = h, \quad x \in \mathbb{T}, \ t \in \mathbb{R}^+.$$

$$(1.2)$$

It is natural to propose the following problem:

Problem. For any time T > 0, any two states u_0 and u_1 in a certain space, can one find an appropriate control h that drives the solution of (1.2) from u_0 at t = 0 to u_1 at t = T?

The problems were first investigated by Russel and Zhang in [13,14] (also in [4]) for the Korteweg-de Vries (KdV) equation

 $u_t + u_{xxx} + uu_x = h, \quad x \in \mathbb{T}, \ t \in \mathbb{R}^+.$ (1.3)

[†]the corresponding author. Email address: hanyc@jlu.edu.cn(Y. Han)

¹Institute of Mathematics, Jilin University, Qianjin Street 2699, 130012 Changchun, China

 $^{^2 \}mathrm{School}$ of Mathematics, Jilin University, Qianjin Street 2699, 130012 Changchun, China

^{*}The authors were supported by National Natural Science Foundation of China (No. 11371169), National 973 Project of China (No. 2012CB821200) and RFDP (No. 20120061110002).

They obtained that there exists a control h which is supported in a given open set $\omega \subset \mathbb{T}$ such that (1.3) is globally exactly controllable. The exact controllability of nonlinear third order dispersion equation with infinite distributed delay is obtained in [5].

However, since the linear KdV-B equation possesses a regularizing effect, the exact controllability may not hold with a localized control. Therefore, we consider a control acts on the entire domain \mathbb{T} .

Throughout the paper, for any $s \in \mathbb{R}$,

$$H_0^s(\mathbb{T}) = \{ u \in H^s(\mathbb{T}); \ [u] := \frac{1}{2\pi} \int_{\mathbb{T}} u(x) dx = 0 \}.$$

Let $(u, v)_0 = \int_{\mathbb{T}} u(x)v(x)dx$ denote the usual scalar product in $L^2(\mathbb{T})$ and $(u, v)_s = ((1 - \partial_x^2)^{\frac{s}{2}}u, (1 - \partial_x^2)^{\frac{s}{2}}v)_0$ denote the scalar product in $H^s(\mathbb{T})$ with corresponding norm $||u||_s = (u, u)_s^{\frac{1}{2}}$.

The main results in this paper are stated as follows:

Theorem 1.1. Let $s \ge 0, T > 0$ be given. There exists a $\delta > 0$ such that for any $u_0, u_1 \in H_0^s(\mathbb{T})$ satisfying

$$\|u_0\|_s \le \delta, \quad \|u_1\|_s \le \delta,$$

one may find a control $h \in L^2(0,T; H_0^{s-1}(\mathbb{T}))$ such that (1.2) admits a unique solution $u \in C([0,T], H_0^s(\mathbb{T})) \cap L^2(0,T, H_0^{s+1}(\mathbb{T})))$ for which $u(0) = u_0$ and $u(T) = u_1$.

The rest of this paper is organized as follows. In Section 2 we get the wellposedness of system (1.1). Section 3 is devoted to the exact controllability.

2. Well-posedness

In this section, attention will be given to the well-posedness of (1.1). The wellposedness of the KdV-B equation was investigated in many articles ([7–9]). In these works, the existence of the solution is obtained by performing a fixed point argument on the corresponding integral equation. One of the main points is to find a "good" function space in which the fixed point argument will be performed. For the KdV equation, J. Bourgain [2] introduced new function spaces, adapted to the linear operator $\partial_t + \partial_x^3$, for which there are good "bilinear" estimates for the nonlinear term uu_x . Using these spaces, Bourgain was able to establish the well-posedness of KdV equation in the spatially periodic setting. Then this method was applied to the KdV-B equation, and obtained the well-posedness of (1.1) in $H_0^s(\mathbb{T})(s > -1)$. Since we only investigate the well-posedness of (1.1) in $H_0^s(\mathbb{T})(s \ge 0)$, there is no need to introduce corresponding Bourgain spaces.

2.1. Linear system

We first consider the inhomogeneous linear system

$$\begin{cases} u_t + u_{xxx} - u_{xx} = f, & x \in \mathbb{T}, \ t > 0, \\ u(x,0) = u_0(x), & x \in \mathbb{T}. \end{cases}$$
(2.1)

Let $s \in \mathbb{R}$ and let A be the linear operator defined by

$$Au = -u_{xxx} + u_{xx}$$

with the domain $\mathcal{D}(A) = H_0^{s+3}(\mathbb{T}) \subset H_0^s(\mathbb{T})$. Clearly, A is densely defined closed operator in $H_0^s(\mathbb{T})$.

For any $u \in \mathcal{D}(A)$, it is easy to deduce that

$$(Au, u)_{s} = (-u_{xxx} + u_{xx}, u)_{s}$$

= $-\left((1 - \partial_{x}^{2})^{\frac{s}{2}} \partial_{x}^{3} u, (1 - \partial_{x}^{2})^{\frac{s}{2}} u\right)_{0} + \left((1 - \partial_{x}^{2})^{\frac{s}{2}} \partial_{x}^{2} u, (1 - \partial_{x}^{2})^{\frac{s}{2}} u\right)_{0}$
= $-\|u_{x}\|_{s}^{2}$
 $\leq 0.$

Similarly, for any $v \in \mathcal{D}(A^*)$, $(A^*v, v)_s \leq 0$, where $A^*v = v_{xxx} + v_{xx}$ and $\mathcal{D}(A^*) = H_0^{s+3}(\mathbb{T})$. This implies that both A and its adjoint A^* are dissipative. Thus A generates a semigroup $\{S(t)\}_{t\geq 0}$ in $H_0^s(\mathbb{T})$ by [11].

For $s \ge 0$ and T > 0. Let $Y_{s,I} = C(\overline{I}; H_0^s(\mathbb{T})) \cap L^2(I; H_0^{s+1}(\mathbb{T}))$ be endowed with the norm

$$\|v\|_{Y_{s,I}} = \|v\|_{L^{\infty}(I;H^{s}(\mathbb{T}))} + \|v\|_{L^{2}(I;H^{s+1}(\mathbb{T}))}.$$

For simplicity, we denote $Y_{s,I}$ by $Y_{s,T}$ if I = (0,T).

Lemma 2.1. For any T > 0, $u_0 \in H_0^s(\mathbb{T})$ and $f \in L^2(0,T; H_0^{s-1}(\mathbb{T}))$, the solution of (2.1) satisfies

$$\|u\|_{Y_{s,T}} \le C\left(\|u_0\|_s + \|f\|_{L^2(0,T;H_0^{s-1}(\mathbb{T}))}\right),\tag{2.2}$$

where C is independent of T.

Proof. To have enough regularity in the following computations, we assume that $u_0 \in H_0^{s+3}(\mathbb{T})$ and that $f \in L^2(0,T; H_0^{s+3}(\mathbb{T}))$, so that the solution u of (2.1) satisfies $u \in C([0,T]; H_0^{s+3}(\mathbb{T})) \cap C^1([0,T]; H_0^s(\mathbb{T}))$.

Taking the scalar product of each term by u in $H_0^s(\mathbb{T})$ results in

$$\begin{split} \frac{1}{2} \|u(\cdot,t)\|_s^2 &+ \int_0^t \|u_x\|_s^2 d\tau = \frac{1}{2} \|u_0\|_s^2 + \int_0^t (f,u)_s d\tau \\ &\leq \frac{1}{2} \|u_0\|_s^2 + \int_0^t \|f\|_{s-1} \|u\|_{s+1} d\tau \\ &\leq \frac{1}{2} \|u_0\|_s^2 + C \int_0^t \|f\|_{s-1} \|u_x\|_s d\tau \\ &\leq \frac{1}{2} \|u_0\|_s^2 + C \int_0^t \|f\|_{s-1}^2 d\tau + \frac{1}{2} \int_0^t \|u_x\|_s^2 d\tau. \end{split}$$

Consequently,

$$\|u(\cdot,t)\|_{s}^{2} + \int_{0}^{t} \|u_{x}\|_{s}^{2} d\tau \leq C \left(\|u_{0}\|_{s}^{2} + \int_{0}^{t} \|f\|_{s-1}^{2} d\tau\right).$$

Taking supremum in $t \in (0, T)$, it follows that

$$\|u\|_{L^{\infty}(0,T;H^{s}(\mathbb{T}))}^{2} + \|u\|_{L^{2}(0,T;H^{s+1}(\mathbb{T}))}^{2} \leq C\left(\|u_{0}\|_{s}^{2} + \|f\|_{L^{2}(0,T;H^{s-1}(\mathbb{T}))}^{2}\right).$$

This is also true for $u_0 \in H^s_0(\mathbb{T})$ and $f \in L^2(0,T; H^{s-1}_0(\mathbb{T}))$.

2.2. Nonlinear system

We now present our first well-posedness result for (1.1).

Proposition 2.1. For any T > 0 and any $u_0 \in H_0^0(\mathbb{T})$, (1.1) admits a unique solution $u \in Y_{0,T}$ which also satisfies

$$\|u\|_{Y_{0,T}} \le C \|u_0\|_0, \tag{2.3}$$

where C is independent of T. Moreover, the corresponding solution map is locally Lipschitz continuous: for any $u_0, v_0 \in H_0^0(\mathbb{T})$, the corresponding solutions u and v of (1.1) satisfy

$$||u - v||_{Y_{0,T}} \le \alpha_{0,T} (||u_0||_0 + ||v_0||_0) ||u_0 - v_0||_0,$$
(2.4)

where $\alpha_{0,T} : \mathbb{R}^+ \to \mathbb{R}^+$ is a nondecreasing continuous function.

Proof. We borrow some ideas from [12]. For given u_0 , define the map Γ on the closed ball $B_{\theta,R} = \{u \in Y_{0,\theta} : ||u||_{Y_{0,\theta}} \leq R\}$ of $Y_{0,\theta}$ by

$$\Gamma(u) = S(t)u_0 - \int_0^t S(t-\tau)(uu_x)(\tau)d\tau.$$

Notice Lemma 2.1 and the fact that

$$\begin{split} \int_{0}^{\theta} \|u\|_{L^{\infty}(\mathbb{T})}^{2} d\tau &\leq C \int_{0}^{\theta} \|u\|_{1} \|u\|_{0} d\tau \\ &\leq C \theta^{\frac{1}{2}} \|u\|_{L^{\infty}(0,\theta;L^{2}(\mathbb{T}))} \|u\|_{L^{2}(0,\theta;H^{1}(\mathbb{T}))}. \end{split}$$

There exist constants C_1, C_2 , such that

$$\|\Gamma(u)\|_{Y_{0,\theta}} \le C_1 \|u_0\|_0 + C_2 \theta^{\frac{1}{4}} \|u\|_{Y_{0,\theta}}^2,$$

$$\|\Gamma(u) - \Gamma(v)\|_{Y_{0,\theta}} \le C_2 \theta^{\frac{1}{4}} \|u + v\|_{Y_{0,\theta}} \|u - v\|_{Y_{0,\theta}}.$$

for any $u, v \in B_{\theta,R}$.

Choosing $R = 2C_1 ||u_0||_0$ and $\theta > 0$ so that $2C_2 \theta^{\frac{1}{4}} R \leq \frac{1}{2}$, then

$$\|\Gamma(u)\|_{Y_{0,\theta}} \le R$$
 and $\|\Gamma(u) - \Gamma(v)\|_{Y_{0,\theta}} \le \frac{1}{2} \|u - v\|_{Y_{0,\theta}}$

for any $u, v \in B_{\theta,R}$. Thus Γ is a contractive mapping on $B_{\theta,R}$. Its fixed point $u = \Gamma(u)$ is the unique solution of (1.1).

Multiply both sides of the first equation in (1.1) by u and integrate with respect x over the interval \mathbb{T} . An integration by parts leads to

$$\frac{1}{2}\frac{d}{dt}\|u(\cdot,t)\|_{0}^{2} + \|u_{x}(\cdot,t)\|_{0}^{2} = 0.$$
(2.5)

This implies

$$\sup_{0 \le t \le \theta} \|u(\cdot, t)\|_0 \le \|u_0\|_0.$$

By the standard extension argument, one may extend θ to T and obtain a nondecreasing continuous function $\alpha_{0,T} : \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$\|u\|_{Y_{0,T}} \le \alpha_{0,T}(\|u_0\|_0) \|u_0\|_0.$$
(2.6)

Similarly, we can obtain (2.4).

On the other hand, integrate (2.5) with respect time over the interval (0, t), then take supremum in $t \in (0, T)$, we can obtain (2.3) which is better than (2.6).

Next, we show that (1.1) is well-posed in $Y_{3,T}$.

Proposition 2.2. For any $u_0 \in H^3_0(\mathbb{T})$, (1.1) admits a unique solution $u \in Y_{3,T}$. Moreover, there exists a nondecreasing continuous function $\alpha_{3,T} : \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$||u||_{Y_{3,T}} \le \alpha_{3,T}(||u_0||_0) ||u_0||_3.$$

Proof. By Proposition 2.1, (1.1) admits a unique solution $u \in Y_{0,T}$, we just need to show further that $u \in Y_{3,T}$. For this purpose, let $v = u_t$, then

$$\begin{cases} v_t + v_{xxx} - v_{xx} + (uv)_x = 0, & x \in \mathbb{T}, \ t > 0, \\ v(x,0) = v_0(x), & x \in \mathbb{T}, \end{cases}$$
(2.7)

where $v_0 = -u_0^{\prime\prime\prime} + u_0^{\prime\prime} - u_0 u_0^{\prime} \in H_0^0(\mathbb{T}).$

Proceeding as in the proof of Proposition 2.1, we see that (2.7) admits a unique solution $v \in Y_{0,T}$. Moreover

$$\|v\|_{Y_{0,T}} \le \alpha_{0,T}(\|u_0\|_0) \|v_0\|_0.$$
(2.8)

Now we claim that (2.8) holds. In fact, it is not difficult that

$$\begin{aligned} \|u\|_{L^{\infty}(0,T;H^{1}(\mathbb{T}))} &\leq C \|u\|_{H^{1}(0,T;H^{1}(\mathbb{T}))} \\ &\leq C \left(\|u\|_{L^{2}(0,T;H^{1}(\mathbb{T}))} + \|v\|_{L^{2}(0,T;H^{1}(\mathbb{T}))} \right), \end{aligned}$$

and

$$||u_x||_0^2 = (u_x, u_x)_0 = -(u, u_{xx})_0 \le ||u||_0 ||u_{xx}||_0.$$

Then for any $\varepsilon > 0$,

$$\begin{aligned} \|uu_x\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))} &\leq \|u\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))} \|u_x\|_{L^{\infty}(0,T;L^{\infty}(\mathbb{T}))} \\ &\leq \|u\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))} \|u_x\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))}^{\frac{1}{2}} \|u_{xx}\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))}^{\frac{1}{2}} \\ &\leq \|u\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))}^{\frac{5}{4}} \|u_{xx}\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))} \\ &\leq \varepsilon \|u_{xx}\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))} + C(\varepsilon) \|u\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))}^{\frac{5}{2}}. \end{aligned}$$

Therefore from the equation $v = -u_{xxx} + u_{xx} - uu_x$, we have

$$\begin{aligned} \|u\|_{L^{\infty}(0,T;H^{2}(\mathbb{T}))} &\leq C\|u_{x}\|_{L^{\infty}(0,T;H^{1}(\mathbb{T}))} \\ &\leq C\Big(\|u_{x}-u\|_{L^{\infty}(0,T;H^{1}(\mathbb{T}))}+\|u\|_{L^{\infty}(0,T;H^{1}(\mathbb{T}))}\Big) \\ &\leq C\Big(\|u_{xxx}-u_{xx}\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))}+\|u\|_{L^{\infty}(0,T;H^{1}(\mathbb{T}))}\Big) \\ &\leq C\Big(\|v+uu_{x}\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))}+\|u\|_{L^{\infty}(0,T;H^{1}(\mathbb{T}))}\Big) \\ &\leq C\Big(\|v\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))}+\|u\|_{L^{\infty}(0,T;H^{1}(\mathbb{T}))} \\ &+\varepsilon\|u_{xx}\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))}+C(\varepsilon)\|u\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))}^{5}\Big). \end{aligned}$$
(2.9)

Choosing $\varepsilon = \frac{1}{2C}$, according to (2.3) and (2.8), there exists a nondecreasing continuous function $\widetilde{\alpha}_{3,T} : \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$\|u\|_{L^{\infty}(0,T;H^{2}(\mathbb{T}))} \leq \widetilde{\alpha}_{3,T}(\|u_{0}\|_{0})\|u_{0}\|_{3}.$$

This implies

$$\begin{aligned} \|uu_x\|_{L^2(0,T;H^1(\mathbb{T}))} &\leq C \|u\|_{L^2(0,T;H^1(\mathbb{T}))} \|u\|_{L^\infty(0,T;H^2(\mathbb{T}))} \\ &\leq C \|u_0\|_0 \widetilde{\alpha}_{3,T} (\|u_0\|_0) \|u_0\|_3. \end{aligned}$$
(2.10)

Computations similar (but more complicated) to those in (2.9) give

$$\|u\|_{L^{\infty}(0,T;H^{3}(\mathbb{T}))} \leq C\left(\|v\|_{L^{\infty}(0,T;L^{2}(\mathbb{T}))} + \|u\|_{L^{\infty}(0,T;H^{2}(\mathbb{T}))}^{9} + \|u\|_{L^{\infty}(0,T;H^{2}(\mathbb{T}))}\right).$$

Using the same argument as in (2.9), we get

$$\|u\|_{L^{2}(0,T;H^{4}(\mathbb{T}))} \leq C\left(\|v\|_{L^{2}(0,T;H^{1}(\mathbb{T}))} + \|uu_{x}\|_{L^{2}(0,T;H^{1}(\mathbb{T}))} + \|u\|_{L^{\infty}(0,T;H^{3}(\mathbb{T}))}\right).$$

Consequently, there exists a nondecreasing continuous function $\alpha_{3,T} : \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$||u||_{L^{\infty}(0,T;H^{3}(\mathbb{T}))} + ||u||_{L^{2}(0,T;H^{4}(\mathbb{T}))} \leq \alpha_{3,T}(||u_{0}||_{0})||u_{0}||_{3}.$$

Finally, we can state the main result in this section.

Theorem 2.1. For any $u_0 \in H^s_0(\mathbb{T})$, (1.1) admits a unique solution $u \in Y_{s,T}$. Moreover, there exists a nondecreasing continuous function $\alpha_{s,T} : \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$||u||_{Y_{s,T}} \le \alpha_{s,T}(||u_0||_0) ||u_0||_s$$

Proof. The cases s = 0 and s = 3 have been proved in Proposition 2.1 and Proposition 2.2. The cases of 0 < s < 3 follows by (2.4) and the nonlinear interpolation theory [1]. The other cases of s can be proved similarly.

3. Controllability

In this section, we consider the exact controllability of the KdV-B equation

$$\begin{cases} u_t + u_{xxx} - u_{xx} + uu_x = h, & x \in \mathbb{T}, \ t > 0, \\ u(x,0) = u_0(x), & x \in \mathbb{T}. \end{cases}$$
(3.1)

The exact controllability of the linear system can be obtained by the classical duality approach. Then by a fixed-point argument, we get the exact controllability of the nonlinear system.

First, let us consider the linear system

$$\begin{cases} u_t + u_{xxx} - u_{xx} = h, & x \in \mathbb{T}, \ t > 0, \\ u(x,0) = u_0(x), & x \in \mathbb{T}. \end{cases}$$
(3.2)

Proposition 3.1. Let $s \ge 0$, T > 0 be given. For any $u_0, u_1 \in H_0^s(\mathbb{T})$, there exists a control input $h \in L^2(0,T; H^{s-1}_0(\mathbb{T}))$ such that (3.2) admits a solution $u \in Y_{s,T}$ satisfying

$$u(x,0) = u_0(x), \ u(x,T) = u_1(x)$$

for any $x \in \mathbb{T}$.

Proof. According to Lemma 2.1, solution of (3.2) belongs to $Y_{s,T}$ for $u_0 \in H_0^s(\mathbb{T})$ and $h \in L^2(0,T; H^{s-1}_0(\mathbb{T}))$. Motivated by [6], we consider the adjoint system

$$\begin{cases} -v_t - v_{xxx} - v_{xx} = 0, & x \in \mathbb{T}, \ t > 0, \\ v(x, T) = v_T(x), & x \in \mathbb{T}. \end{cases}$$
(3.3)

First we claim that for any T > 0, the system (3.3) admits a unique solution $v \in Y_{-s,T}$.

In fact, let $\tilde{v}(x,t) = v(x,T-t)$, then \tilde{v} solves

$$\begin{cases} \widetilde{v}_t - \widetilde{v}_{xxx} - \widetilde{v}_{xx} = 0, & x \in \mathbb{T}, \ t > 0, \\ \widetilde{v}(x, 0) = v_T(x), & x \in \mathbb{T}. \end{cases}$$

Similar as in Section 2, the linear operator \widetilde{A} defined by $\widetilde{A}v = v_{xxx} + v_{xx}$ also generates a semigroup in $H_0^{-s}(\mathbb{T})$. Thus for any $v_T \in H_0^{-s}(\mathbb{T}), v \in C([0,T]; H_0^{-s}(\mathbb{T}))$. Moreover, by a similar method as in Lemma 2.1, we have

$$\|v\|_{Y_{-s,T}} \le C \|v_T\|_{-s}. \tag{3.4}$$

Taking the duality product of each term of (3.3) by v yields

$$\langle v,u\rangle_{-s,s}\mid_0^T=\int_0^T\langle v,h\rangle_{-s+1,s-1}dt,$$

where $\langle \cdot, \cdot \rangle_{-s,s}$ denotes the duality pairing $\langle \cdot, \cdot \rangle_{H_0^{-s}(\mathbb{T}), H_0^s(\mathbb{T})}$. Without loss of generality, we can assume that $u_0 = 0$. Following the classical duality approach, it is sufficient to prove the following observability inequality

$$\|v_T\|_{-s}^2 \le C \int_0^T \|v\|_{-s+1}^2 dt.$$
(3.5)

Taking the scalar product of each term of by tv in $H_0^{-s}(\mathbb{T})$ results in

$$\frac{T}{2} \|v_T\|_{-s}^2 = \frac{1}{2} \int_0^T \|v\|_{-s}^2 dt + \int_0^T t \|v_x\|_{-s}^2 dt.$$

Combined with the Poincaré inequality, this gives (3.5). \Box Now we can obtain the local exact controllability of the nonlinear system (3.1).

Proof of Theorem 1.1. From Proposition 3.1, by a classical functional analysis argument [3], one can construct a continuous operator $\Phi : H_0^s(\mathbb{T}) \to L^2(0,T; H_0^{s-1}(\mathbb{T}))$ such that for any $u_1 \in H_0^s(\mathbb{T})$, the solution u of (3.2) associated with $u_0 = 0$ and $h = \Phi(u_1)$ satisfies $u(T) = u_1$. Let us denote by W(h) the corresponding trajectory. We know from Lemma 2.1 that W is continuous from $L^2(0,T; H_0^{s-1}(\mathbb{T}))$ into $Y_{s,T}$.

Pick any $u_0, u_1 \in H_0^s(\mathbb{T})$ satisfying $||u_0||_s \leq \delta$, $||u_1||_s \leq \delta$ with δ to be determined. For any $u \in Y_{s,T}$, we set

$$\omega(u) = -\int_0^T S(T-\tau)(uu_x)(\tau)d\tau.$$

It is easy to deduce that

$$\begin{split} \|\omega(u)\|_{s} \leq C \|\int_{0}^{t} S(t-\tau)(uu_{x})(\tau)d\tau\|_{Y_{s,T}} \leq C \|u\|_{Y_{s,T}}^{2} \\ \|\omega(u)-\omega(v)\|_{s} \leq C \|\int_{0}^{t} S(t-\tau)(uu_{x}-vv_{x})(\tau)d\tau\|_{Y_{s,T}} \\ \leq C \|u+v\|_{Y_{s,T}}\|u-v\|_{Y_{s,T}}. \end{split}$$

If we choose $h = \Phi(u_1 - S(T)u_0 - \omega(u))$, then

$$S(t)u_0 - \int_0^t S(t-\tau)(uu_x)(\tau)d\tau + W(h)(t) = \begin{cases} u_0, & \text{if } t = 0, \\ u_1, & \text{if } t = T. \end{cases}$$

We are led to consider the nonlinear map

$$\Gamma(u) = S(t)u_0 - \int_0^t S(t-\tau)(uu_x)(\tau)d\tau + W(h)(t).$$

Let

$$B_R = \{ u \in Y_{s,T} : \|u\|_{Y_{s,T}} \le R \}.$$

For all $u, v \in B_R$,

$$\begin{split} &\|\Gamma(u)\|_{Y_{s,T}} \\ \leq & C\left(\|u_0\|_s + \|uu_x\|_{L^1(0,T;H^s(\mathbb{T}))} + \|\Phi(u_1 - S(T)u_0 - \omega(u))\|_{L^2(0,T;H^{s-1}(\mathbb{T}))}\right) \\ \leq & C_1(\|u_0\|_s + \|u_1\|_s) + C_2\|u\|_{Y^2_{s,T}} \\ \leq & 2C_1\delta + C_2R^2, \\ &\|\Gamma(u) - \Gamma(v)\|_{Y_{s,T}} \\ \leq & C\|\Phi(\omega(u) - \omega(v))\|_{L^2(0,T;H^{s-1}(\mathbb{T}))} + \|uu_x - vv_x\|_{L^1(0,T;H^s(\mathbb{T}))} \\ \leq & C_2\|u + v\|_{Y_{s,T}}\|u - v\|_{Y_{s,T}} \\ \leq & 2C_2R\|u - v\|_{Y_{s,T}}. \end{split}$$

Picking $R = 4C_1\delta$ and $\delta = (8C_1C_2)^{-1}$, we obtain that for u_0, u_1 satisfying $||u_0||_s \leq \delta$, $||u_1||_s \leq \delta$ and $u, v \in B_R$ that

$$\|\Gamma(u) - \Gamma(v)\|_{Y_{s,T}} \le R, \quad \|\Gamma(u)\|_{Y_{s,T}} \le \frac{1}{2} \|u - v\|_{Y_{s,T}}.$$

It follows from the contraction mapping theorem that Γ has a unique fixed point u in B_R . Then u satisfies (3.1) with $h = \Phi(u_1 - S(T)u_0 - \omega(u))$ and $u(T) = u_1$, as desired.

The proof of Theorem 1.1 is completed.

References

- J. Bergh and J. Löfstrom, Interpolation Spaces, An Introduction, Springer-Verlag, New York, 1976.
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, part II: the KdV equation, Geom. Funct. Anal., 3(1993)(3), 209–262.
- J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, American Mathematical Society, Providence, 136(2007).
- [4] C. Laurent, L. Rosier and B. Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Comm. Partial Differential Equations, 35(2010)(4), 707–744.
- [5] M. Li and H. Wang, Controllability of nonlinear third order dispersion equation with distributed delay, Journal of Applied Analysis and Computation, 2(2012)(4), 415–421.
- [6] F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equation on a periodic domain, Trans. Amer. Math. Soc., 367(2015)(7), 4595–4626.
- [7] L. Molinet and F. Ribaud, On the low regularity of the Korteweg de Vries-Burgers equation, International Mathematics Research Notices, 37(2002), 1979–2005.
- [8] L. Molinet and F. Ribaud, The Cauchy problem for dissipative Korteweg de Vries equations in Sobolev spaces of negative order, Indiana Univ. Math. J., 50(2001)(4), 1745–1776.
- [9] L. Molinet and S. Vento, Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case, Trans. Amer. Math. Soc., 365(2013)(1), 123-141.
- [10] E. Ott and N. Sudan, Damping of solitary waves, Phys. Fluids, 13(1970)(6), 1432–1434.
- [11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1983.
- [12] L. Rosier and B. Y. Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM J. Control Optim., 45(2006)(3), 927–956.
- [13] D. L. Russell and B. Y. Zhang, Controllability and stabilizability of the third order linear dispersion equation on a periodic domain, SIAM J. Control Optim., 31(1993)(3), 659–676.
- [14] D. L. Russell and B. Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 348(1996)(9), 3643– 3672.