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CONTROLLABILITY OF THE KORTEWEG-DE
VRIES-BURGERS EQUATION∗

Hang Zhou1 and Yuecai Han2,†

Abstract In this paper, we investigate the controllability of the Korteweg-
de Vries-Burgers equation on a periodic domain T = R/(2πZ). With the aid
of the classical duality approach and a fixed-point argument, the local exact
controllability is established.
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1. Introduction

The Korteweg-de Vries-Burgers (KdV-B) equation{
ut + uxxx − uxx + uux = 0,
u(x, 0) = u0(x),

x ∈ T, t > 0,
x ∈ T (1.1)

has been derived as a model for the propagation of weakly nonlinear dispersive
long waves in some physical contexts when dissipative effects occur (see [10]). The
well-posedness of (1.1) has been studied in [7–9]. In these works, the existence of
the solution is obtained by performing a fixed point argument on the corresponding
integral equation.

As far as we know, the discussion of the KdV-B equation is mainly about the
well-posedness. In this paper, we will study the KdV-B equation from a control
point of view with a forcing term h = h(x, t) added to the equation as a control
input:

ut + uxxx − uxx + uux = h, x ∈ T, t ∈ R+. (1.2)

It is natural to propose the following problem:
Problem. For any time T > 0, any two states u0 and u1 in a certain space, can

one find an appropriate control h that drives the solution of (1.2) from u0 at t = 0
to u1 at t = T?

The problems were first investigated by Russel and Zhang in [13,14] (also in [4])
for the Korteweg-de Vries (KdV) equation

ut + uxxx + uux = h, x ∈ T, t ∈ R+. (1.3)
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They obtained that there exists a control h which is supported in a given open set
ω ⊂ T such that (1.3) is globally exactly controllable. The exact controllability of
nonlinear third order dispersion equation with infinite distributed delay is obtained
in [5].

However, since the linear KdV-B equation possesses a regularizing effect, the
exact controllability may not hold with a localized control. Therefore, we consider
a control acts on the entire domain T.

Throughout the paper, for any s ∈ R,

Hs
0(T) = {u ∈ Hs(T); [u] :=

1

2π

∫
T
u(x)dx = 0}.

Let(u, v)0 =
∫
T u(x)v(x)dx denote the usual scalar product in L2(T) and (u, v)s =

((1 − ∂2
x)

s
2u, (1 − ∂2

x)
s
2 v)0 denote the scalar product in Hs(T) with corresponding

norm ∥u∥s = (u, u)
1
2
s .

The main results in this paper are stated as follows:

Theorem 1.1. Let s ≥ 0, T > 0 be given. There exists a δ > 0 such that for any
u0, u1 ∈ Hs

0(T) satisfying
∥u0∥s ≤ δ, ∥u1∥s ≤ δ,

one may find a control h ∈ L2(0, T ;Hs−1
0 (T)) such that (1.2) admits a unique

solution u ∈ C([0, T ],Hs
0(T))∩L2(0, T,Hs+1

0 (T))) for which u(0) = u0 and u(T ) =
u1.

The rest of this paper is organized as follows. In Section 2 we get the well-
posedness of system (1.1). Section 3 is devoted to the exact controllability.

2. Well-posedness

In this section, attention will be given to the well-posedness of (1.1). The well-
posedness of the KdV-B equation was investigated in many articles ( [7–9]). In
these works, the existence of the solution is obtained by performing a fixed point
argument on the corresponding integral equation. One of the main points is to find a
“good” function space in which the fixed point argument will be performed. For the
KdV equation, J. Bourgain [2] introduced new function spaces, adapted to the linear
operator ∂t + ∂3

x, for which there are good “bilinear” estimates for the nonlinear
term uux. Using these spaces, Bourgain was able to establish the well-posedness of
KdV equation in the spatially periodic setting. Then this method was applied to
the KdV-B equation, and obtained the well-posedness of (1.1) in Hs

0(T)(s > −1).
Since we only investigate the well-posedness of (1.1) in Hs

0(T)(s ≥ 0), there is no
need to introduce corresponding Bourgain spaces.

2.1. Linear system

We first consider the inhomogeneous linear system{
ut + uxxx − uxx = f,
u(x, 0) = u0(x),

x ∈ T, t > 0,
x ∈ T. (2.1)
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Let s ∈ R and let A be the linear operator defined by

Au = −uxxx + uxx

with the domain D(A) = Hs+3
0 (T) ⊂ Hs

0(T). Clearly, A is densely defined closed
operator in Hs

0(T).
For any u ∈ D(A), it is easy to deduce that

(Au, u)s = (−uxxx + uxx, u)s

= −
(
(1− ∂2

x)
s
2 ∂3

xu, (1− ∂2
x)

s
2u

)
0
+
(
(1− ∂2

x)
s
2 ∂2

xu, (1− ∂2
x)

s
2u

)
0

= −∥ux∥2s
≤ 0.

Similarly, for any v ∈ D(A∗), (A∗v, v)s ≤ 0, where A∗v = vxxx + vxx and
D(A∗) = Hs+3

0 (T). This implies that both A and its adjoint A∗ are dissipative.
Thus A generates a semigroup {S(t)}t≥0 in Hs

0(T) by [11].
For s ≥ 0 and T > 0. Let Ys,I = C(I;Hs

0(T))∩L2(I;Hs+1
0 (T)) be endowed with

the norm

∥v∥Ys,I
= ∥v∥L∞(I;Hs(T)) + ∥v∥L2(I;Hs+1(T)).

For simplicity, we denote Ys,I by Ys,T if I = (0, T ).

Lemma 2.1. For any T > 0, u0 ∈ Hs
0(T) and f ∈ L2(0, T ;Hs−1

0 (T)), the solution
of (2.1) satisfies

∥u∥Ys,T
≤ C

(
∥u0∥s + ∥f∥L2(0,T ;Hs−1

0 (T))

)
, (2.2)

where C is independent of T.

Proof. To have enough regularity in the following computations, we assume that
u0 ∈ Hs+3

0 (T) and that f ∈ L2(0, T ;Hs+3
0 (T)), so that the solution u of (2.1)

satisfies u ∈ C([0, T ];Hs+3
0 (T)) ∩ C1([0, T ];Hs

0(T)).
Taking the scalar product of each term by u in Hs

0(T) results in

1

2
∥u(·, t)∥2s +

∫ t

0

∥ux∥2sdτ =
1

2
∥u0∥2s +

∫ t

0

(f, u)sdτ

≤ 1

2
∥u0∥2s +

∫ t

0

∥f∥s−1∥u∥s+1dτ

≤ 1

2
∥u0∥2s + C

∫ t

0

∥f∥s−1∥ux∥sdτ

≤ 1

2
∥u0∥2s + C

∫ t

0

∥f∥2s−1dτ +
1

2

∫ t

0

∥ux∥2sdτ.

Consequently,

∥u(·, t)∥2s +
∫ t

0

∥ux∥2sdτ ≤ C

(
∥u0∥2s +

∫ t

0

∥f∥2s−1dτ

)
.

Taking supremum in t ∈ (0, T ), it follows that

∥u∥2L∞(0,T ;Hs(T)) + ∥u∥2L2(0,T ;Hs+1(T)) ≤ C
(
∥u0∥2s + ∥f∥2L2(0,T ;Hs−1(T))

)
.

This is also true for u0 ∈ Hs
0(T) and f ∈ L2(0, T ;Hs−1

0 (T)).
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2.2. Nonlinear system

We now present our first well-posedness result for (1.1).

Proposition 2.1. For any T > 0 and any u0 ∈ H0
0 (T), (1.1) admits a unique

solution u ∈ Y0,T which also satisfies

∥u∥Y0,T
≤ C∥u0∥0, (2.3)

where C is independent of T. Moreover, the corresponding solution map is locally
Lipschitz continuous: for any u0, v0 ∈ H0

0 (T), the corresponding solutions u and v
of (1.1) satisfy

∥u− v∥Y0,T ≤ α0,T (∥u0∥0 + ∥v0∥0)∥u0 − v0∥0, (2.4)

where α0,T : R+ → R+ is a nondecreasing continuous function.

Proof. We borrow some ideas from [12]. For given u0, define the map Γ on the
closed ball Bθ,R = {u ∈ Y0,θ : ∥u∥Y0,θ

≤ R} of Y0,θ by

Γ(u) = S(t)u0 −
∫ t

0

S(t− τ)(uux)(τ)dτ.

Notice Lemma 2.1 and the fact that∫ θ

0

∥u∥2L∞(T)dτ ≤ C

∫ θ

0

∥u∥1∥u∥0dτ

≤ Cθ
1
2 ∥u∥L∞(0,θ;L2(T))∥u∥L2(0,θ;H1(T)).

There exist constants C1, C2, such that

∥Γ(u)∥Y0,θ
≤ C1∥u0∥0 + C2θ

1
4 ∥u∥2Y0,θ

,

∥Γ(u)− Γ(v)∥Y0,θ
≤ C2θ

1
4 ∥u+ v∥Y0,θ

∥u− v∥Y0,θ

for any u, v ∈ Bθ,R.

Choosing R = 2C1∥u0∥0 and θ > 0 so that 2C2θ
1
4R ≤ 1

2 , then

∥Γ(u)∥Y0,θ
≤ R and ∥Γ(u)− Γ(v)∥Y0,θ

≤ 1

2
∥u− v∥Y0,θ

for any u, v ∈ Bθ,R. Thus Γ is a contractive mapping on Bθ,R. Its fixed point
u = Γ(u) is the unique solution of (1.1).

Multiply both sides of the first equation in (1.1) by u and integrate with respect
x over the interval T. An integration by parts leads to

1

2

d

dt
∥u(·, t)∥20 + ∥ux(·, t)∥20 = 0. (2.5)

This implies

sup
0≤t≤θ

∥u(·, t)∥0 ≤ ∥u0∥0.
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By the standard extension argument, one may extend θ to T and obtain a
nondecreasing continuous function α0,T : R+ → R+ such that

∥u∥Y0,T ≤ α0,T (∥u0∥0)∥u0∥0. (2.6)

Similarly, we can obtain (2.4).

On the other hand, integrate (2.5) with respect time over the interval (0, t), then
take supremum in t ∈ (0, T ), we can obtain (2.3) which is better than (2.6).

Next, we show that (1.1) is well-posed in Y3,T .

Proposition 2.2. For any u0 ∈ H3
0 (T), (1.1) admits a unique solution u ∈ Y3,T .

Moreover, there exists a nondecreasing continuous function α3,T : R+ → R+ such
that

∥u∥Y3,T
≤ α3,T (∥u0∥0)∥u0∥3.

Proof. By Proposition 2.1, (1.1) admits a unique solution u ∈ Y0,T , we just need
to show further that u ∈ Y3,T . For this purpose, let v = ut, then{

vt + vxxx − vxx + (uv)x = 0,
v(x, 0) = v0(x),

x ∈ T, t > 0,
x ∈ T, (2.7)

where v0 = −u′′′
0 + u′′

0 − u0u
′
0 ∈ H0

0 (T).
Proceeding as in the proof of Proposition 2.1, we see that (2.7) admits a unique

solution v ∈ Y0,T . Moreover

∥v∥Y0,T
≤ α0,T (∥u0∥0)∥v0∥0. (2.8)

Now we claim that (2.8) holds.

In fact, it is not difficult that

∥u∥L∞(0,T ;H1(T)) ≤ C∥u∥H1(0,T ;H1(T))

≤ C
(
∥u∥L2(0,T ;H1(T)) + ∥v∥L2(0,T ;H1(T))

)
,

and

∥ux∥20 = (ux, ux)0 = −(u, uxx)0 ≤ ∥u∥0∥uxx∥0.

Then for any ε > 0,

∥uux∥L∞(0,T ;L2(T)) ≤ ∥u∥L∞(0,T ;L2(T))∥ux∥L∞(0,T ;L∞(T))

≤ ∥u∥L∞(0,T ;L2(T))∥ux∥
1
2

L∞(0,T ;L2(T))∥uxx∥
1
2

L∞(0,T ;L2(T))

≤ ∥u∥
5
4

L∞(0,T ;L2(T))∥uxx∥
3
4

L∞(0,T ;L2(T))

≤ ε∥uxx∥L∞(0,T ;L2(T)) + C(ε)∥u∥5L∞(0,T ;L2(T)).
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Therefore from the equation v = −uxxx + uxx − uux, we have

∥u∥L∞(0,T ;H2(T)) ≤C∥ux∥L∞(0,T ;H1(T))

≤C
(
∥ux − u∥L∞(0,T ;H1(T)) + ∥u∥L∞(0,T ;H1(T))

)
≤C

(
∥uxxx − uxx∥L∞(0,T ;L2(T)) + ∥u∥L∞(0,T ;H1(T))

)
≤C

(
∥v + uux∥L∞(0,T ;L2(T)) + ∥u∥L∞(0,T ;H1(T))

)
≤C

(
∥v∥L∞(0,T ;L2(T)) + ∥u∥L∞(0,T ;H1(T))

+ ε∥uxx∥L∞(0,T ;L2(T)) + C(ε)∥u∥5L∞(0,T ;L2(T))

)
. (2.9)

Choosing ε = 1
2C , according to (2.3) and (2.8), there exists a nondecreasing

continuous function α̃3,T : R+ → R+ such that

∥u∥L∞(0,T ;H2(T)) ≤ α̃3,T (∥u0∥0)∥u0∥3.

This implies

∥uux∥L2(0,T ;H1(T)) ≤ C∥u∥L2(0,T ;H1(T))∥u∥L∞(0,T ;H2(T)) (2.10)

≤ C∥u0∥0α̃3,T (∥u0∥0)∥u0∥3.

Computations similar (but more complicated) to those in (2.9) give

∥u∥L∞(0,T ;H3(T)) ≤ C
(
∥v∥L∞(0,T ;L2(T)) + ∥u∥9L∞(0,T ;H2(T)) + ∥u∥L∞(0,T ;H2(T))

)
.

Using the same argument as in (2.9), we get

∥u∥L2(0,T ;H4(T)) ≤ C
(
∥v∥L2(0,T ;H1(T)) + ∥uux∥L2(0,T ;H1(T)) + ∥u∥L∞(0,T ;H3(T))

)
.

Consequently, there exists a nondecreasing continuous function α3,T : R+ → R+

such that

∥u∥L∞(0,T ;H3(T)) + ∥u∥L2(0,T ;H4(T)) ≤ α3,T (∥u0∥0)∥u0∥3.

Finally, we can state the main result in this section.

Theorem 2.1. For any u0 ∈ Hs
0(T), (1.1) admits a unique solution u ∈ Ys,T .

Moreover, there exists a nondecreasing continuous function αs,T : R+ → R+ such
that

∥u∥Ys,T ≤ αs,T (∥u0∥0)∥u0∥s.

Proof. The cases s = 0 and s = 3 have been proved in Proposition 2.1 and Propo-
sition 2.2. The cases of 0 < s < 3 follows by (2.4) and the nonlinear interpolation
theory [1]. The other cases of s can be proved similarly.

3. Controllability

In this section, we consider the exact controllability of the KdV-B equation{
ut + uxxx − uxx + uux = h,
u(x, 0) = u0(x),

x ∈ T, t > 0,
x ∈ T. (3.1)
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The exact controllability of the linear system can be obtained by the classical
duality approach. Then by a fixed-point argument, we get the exact controllability
of the nonlinear system.

First, let us consider the linear system{
ut + uxxx − uxx = h,
u(x, 0) = u0(x),

x ∈ T, t > 0,
x ∈ T. (3.2)

Proposition 3.1. Let s ≥ 0, T > 0 be given. For any u0, u1 ∈ Hs
0(T), there exists

a control input h ∈ L2(0, T ;Hs−1
0 (T)) such that (3.2) admits a solution u ∈ Ys,T

satisfying

u(x, 0) = u0(x), u(x, T ) = u1(x)

for any x ∈ T.

Proof. According to Lemma 2.1, solution of (3.2) belongs to Ys,T for u0 ∈ Hs
0(T)

and h ∈ L2(0, T ;Hs−1
0 (T)).

Motivated by [6], we consider the adjoint system{
−vt − vxxx − vxx = 0,
v(x, T ) = vT (x),

x ∈ T, t > 0,
x ∈ T. (3.3)

First we claim that for any T > 0, the system (3.3) admits a unique solution
v ∈ Y−s,T .

In fact, let ṽ(x, t) = v(x, T − t), then ṽ solves{
ṽt − ṽxxx − ṽxx = 0,
ṽ(x, 0) = vT (x),

x ∈ T, t > 0,
x ∈ T.

Similar as in Section 2, the linear operator Ã defined by Ãv = vxxx+vxx also gen-
erates a semigroup in H−s

0 (T). Thus for any vT ∈ H−s
0 (T), v ∈ C([0, T ];H−s

0 (T)).
Moreover, by a similar method as in Lemma 2.1, we have

∥v∥Y−s,T
≤ C∥vT ∥−s. (3.4)

Taking the duality product of each term of (3.3) by v yields

⟨v, u⟩−s,s |T0 =
∫ T

0

⟨v, h⟩−s+1,s−1dt,

where ⟨· , ·⟩−s,s denotes the duality pairing ⟨· , ·⟩H−s
0 (T),Hs

0 (T)
. Without loss of gen-

erality, we can assume that u0 = 0. Following the classical duality approach, it is
sufficient to prove the following observability inequality

∥vT ∥2−s ≤ C

∫ T

0

∥v∥2−s+1dt. (3.5)

Taking the scalar product of each term of by tv in H−s
0 (T) results in

T

2
∥vT ∥2−s =

1

2

∫ T

0

∥v∥2−sdt+

∫ T

0

t∥vx∥2−sdt.
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Combined with the Poincaré inequality, this gives (3.5).
Now we can obtain the local exact controllability of the nonlinear system (3.1).

Proof of Theorem 1.1. From Proposition 3.1, by a classical functional analysis ar-
gument [3], one can construct a continuous operator Φ : Hs

0(T) → L2(0, T ;Hs−1
0 (T))

such that for any u1 ∈ Hs
0(T), the solution u of (3.2) associated with u0 = 0 and

h = Φ(u1) satisfies u(T ) = u1. Let us denote by W (h) the corresponding trajectory.
We know from Lemma 2.1 that W is continuous from L2(0, T ;Hs−1

0 (T)) into Ys,T .
Pick any u0, u1 ∈ Hs

0(T) satisfying ∥u0∥s ≤ δ, ∥u1∥s ≤ δ with δ to be deter-
mined. For any u ∈ Ys,T , we set

ω(u) = −
∫ T

0

S(T − τ)(uux)(τ)dτ.

It is easy to deduce that

∥ω(u)∥s ≤C∥
∫ t

0

S(t− τ)(uux)(τ)dτ∥Ys,T
≤ C∥u∥2Ys,T

,

∥ω(u)− ω(v)∥s ≤C∥
∫ t

0

S(t− τ)(uux − vvx)(τ)dτ∥Ys,T

≤C∥u+ v∥Ys,T
∥u− v∥Ys,T

.

If we choose h = Φ(u1 − S(T )u0 − ω(u)), then

S(t)u0 −
∫ t

0

S(t− τ)(uux)(τ)dτ +W (h)(t) =

{
u0, if t = 0,
u1, if t = T.

We are led to consider the nonlinear map

Γ(u) = S(t)u0 −
∫ t

0

S(t− τ)(uux)(τ)dτ +W (h)(t).

Let

BR = {u ∈ Ys,T : ∥u∥Ys,T ≤ R}.

For all u, v ∈ BR,

∥Γ(u)∥Ys,T

≤C
(
∥u0∥s + ∥uux∥L1(0,T ;Hs(T)) + ∥Φ(u1 − S(T )u0 − ω(u))∥L2(0,T ;Hs−1(T))

)
≤C1(∥u0∥s + ∥u1∥s) + C2∥u∥Y 2

s,T

≤2C1δ + C2R
2,

∥Γ(u)− Γ(v)∥Ys,T

≤C∥Φ(ω(u)− ω(v))∥L2(0,T ;Hs−1(T)) + ∥uux − vvx∥L1(0,T ;Hs(T))

≤C2∥u+ v∥Ys,T ∥u− v∥Ys,T

≤2C2R∥u− v∥Ys,T
.

Picking R = 4C1δ and δ = (8C1C2)
−1, we obtain that for u0, u1 satisfying

∥u0∥s ≤ δ, ∥u1∥s ≤ δ and u, v ∈ BR that

∥Γ(u)− Γ(v)∥Ys,T
≤ R, ∥Γ(u)∥Ys,T

≤ 1

2
∥u− v∥Ys,T

.
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It follows from the contraction mapping theorem that Γ has a unique fixed point u
in BR. Then u satisfies (3.1) with h = Φ(u1 − S(T )u0 − ω(u)) and u(T ) = u1, as
desired.

The proof of Theorem 1.1 is completed.
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