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CONTROLLABILITY OF THE KORTEWEG-DE
VRIES-BURGERS EQUATION*

Hang Zhou' and Yuecai Han?{

Abstract In this paper, we investigate the controllability of the Korteweg-
de Vries-Burgers equation on a periodic domain T = R/(27Z). With the aid
of the classical duality approach and a fixed-point argument, the local exact
controllability is established.
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1. Introduction

The Korteweg-de Vries-Burgers (KdV-B) equation

{ Ut + Ugppe — Uge + UUz = 0, zeT, t>0, (1.1)

u(x,0) = up(x), zeT

has been derived as a model for the propagation of weakly nonlinear dispersive
long waves in some physical contexts when dissipative effects occur (see [10]). The
well-posedness of (1.1) has been studied in [7-9]. In these works, the existence of
the solution is obtained by performing a fixed point argument on the corresponding
integral equation.

As far as we know, the discussion of the KdV-B equation is mainly about the
well-posedness. In this paper, we will study the KdV-B equation from a control
point of view with a forcing term h = h(x,t) added to the equation as a control
input:

Ut + Upgy — Ugy + Uy =h, x €T, tecRT. (1.2)

It is natural to propose the following problem:

Problem. For any time 7' > 0, any two states ug and u; in a certain space, can
one find an appropriate control h that drives the solution of (1.2) from ug at t =0
touy at t =17

The problems were first investigated by Russel and Zhang in [13,14] (also in [4])
for the Korteweg-de Vries (KdV) equation

Ut + Upgy +uuy =h, x €T, teRT. (1.3)
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They obtained that there exists a control h which is supported in a given open set
w C T such that (1.3) is globally exactly controllable. The exact controllability of
nonlinear third order dispersion equation with infinite distributed delay is obtained
in [5].

However, since the linear KdV-B equation possesses a regularizing effect, the
exact controllability may not hold with a localized control. Therefore, we consider
a control acts on the entire domain T.

Throughout the paper, for any s € R,

1
H{(T) = {u e H¥T); [u] := —/u(m)da: = 0}.
2 T
Let(u,v)o = [ u(z)v(z)dz denote the usual scalar product in L*(T) and (u,v)s =
(1 —92)2u, (1 — 8%)3v)y denote the scalar product in H*(T) with corresponding
1
norm |lulls = (u,u)Z.
The main results in this paper are stated as follows:

Theorem 1.1. Let s > 0,7 > 0 be given. There exists a 6 > 0 such that for any
ug, w1 € HF(T) satisfying
[uolls <6, [lualls <6,

one may find a control h € L*(0,T; HS Y(T)) such that (1.2) admits a unique
solution u € C([0,T], Hy(T)) N L?(0, T, HST(T))) for which u(0) = ug and u(T) =
Uuq .-

The rest of this paper is organized as follows. In Section 2 we get the well-
posedness of system (1.1). Section 3 is devoted to the exact controllability.

2. Well-posedness

In this section, attention will be given to the well-posedness of (1.1). The well-
posedness of the KdV-B equation was investigated in many articles ( [7-9]). In
these works, the existence of the solution is obtained by performing a fixed point
argument on the corresponding integral equation. One of the main points is to find a
“good” function space in which the fixed point argument will be performed. For the
KdV equation, J. Bourgain [2] introduced new function spaces, adapted to the linear
operator 9; + 93, for which there are good “bilinear” estimates for the nonlinear
term uu,. Using these spaces, Bourgain was able to establish the well-posedness of
KdV equation in the spatially periodic setting. Then this method was applied to
the KdV-B equation, and obtained the well-posedness of (1.1) in H5(T)(s > —1).
Since we only investigate the well-posedness of (1.1) in H§(T)(s > 0), there is no
need to introduce corresponding Bourgain spaces.

2.1. Linear system

We first consider the inhomogeneous linear system

ut+uwwm_uww:f7 zeT, t>0,
u(z,0) = up(x), z e T.
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Let s € R and let A be the linear operator defined by
Au = —Uggy + Uz

with the domain D(A) = HS™(T) ¢ Hg(T). Clearly, A is densely defined closed
operator in Hg(T).
For any u € D(A), it is easy to deduce that

(Au, U/)s = (_ua:x:v + Ugy, u)s
== (1= 09)%00u, (1 - ) Fu), + ((1 - 9)F07u, (1 - 97)5u),
= —lusll2
<0.
Similarly, for any v € D(A*), (A*v,v)s < 0, where A*v = Vygy + Vs and
D(A*) = Ht3(T). This implies that both A and its adjoint A* are dissipative.
Thus A generates a semigroup {S(t)}¢>o in H§(T) by [11].

For s > 0 and T > 0. Let Y, ; = C(I; H3(T)) N L?(I; HyT (T)) be endowed with
the norm

vlly..r = vllzes (r;m (my) + 10l L2051 (1))-

For simplicity, we denote Yy by Y r if I = (0,T).

Lemma 2.1. For any T > 0, ug € H§(T) and f € L*(0,T; HS"'(T)), the solution
of (2.1) satisfies

e < € (lolls + 171l 2o rsaiz— oy ) - (2.2)

where C' is independent of T.

Proof. To have enough regularity in the following computations, we assume that
up € HST(T) and that f € L2(0,T; Hi3(T)), so that the solution u of (2.1)
satisfies u € C([0,T); H3t3(T)) n C1([0, T); Hy(T)).

Taking the scalar product of each term by u in H§(T) results in

1 ¢ 1 ‘
Sl + [ luldr = Sl + [ (fu)udr
0 0
1 t
2
< gl + [ 17 lallalosrdr
0
Lo ¢
< Sl +C [ flcaluar
0

1 2 K 2 1 K 2
< sl +C [ 112 adr+ 5 [ fusar
0 0
Consequently,
t t
hwwﬁ+4wﬁws00mﬁ+4miﬂﬁ.
Taking supremum in ¢ € (0,7"), it follows that

”u”%i’Q(O,T;HS(T)) + ||UH2L2(0,T;HS+1(T)) <C (”UO”i + ”f”%?(O,T;HS*l(’JT))) .

This is also true for ug € H§(T) and f € L*(0,T; Hy~*(T)). O
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2.2. Nonlinear system
We now present our first well-posedness result for (1.1).

Proposition 2.1. For any T > 0 and any ug € H(T), (1.1) admits a unique
solution u € Yy v which also satisfies

[ullys » < Clluollo, (2.3)

where C is independent of T. Moreover, the corresponding solution map is locally
Lipschitz continuous: for any ug,vo € HS(T), the corresponding solutions u and v

of (1.1) satisfy
flu — U||Y0,T < ao,7(|[uollo + [lvollo) luo — vollo, (2.4)

where apr : RY — RT is a nondecreasing continuous function.

Proof. We borrow some ideas from [12]. For given wg, define the map I" on the
closed ball By g = {u € Yo : ||ully,, < R} of Y9 by

() = S(Huo — /0 S(t — 7)(us)()dr-

Notice Lemma 2.1 and the fact that

0 )
| i emyar <€ [ pulilulods
< Co? lull o< (0,6;2(m) lull L2 (0,0, (7)) -
There exist constants C7,Csy, such that
IT(w)llyo,0 < Cilluollo + C20% ull3, .
ID() = T()Iva, < Cab u+vllvy pllu = vy,
for any u,v € By, g.

Choosing R = 2C ||lugl|o and 6 > 0 so that 20507 R < 1, then

1
IT@)lyso < B and  [IT(w) = T(@)lly,e < 5llu=vlvo,

for any u,v € By r. Thus I' is a contractive mapping on By r. Its fixed point
u = I'(u) is the unique solution of (1.1).

Multiply both sides of the first equation in (1.1) by u and integrate with respect
x over the interval T. An integration by parts leads to

5l G + llua ()5 = 0. (2.5)
This implies

sup [lu(-,t)[lo < [luollo-
0<t<6
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By the standard extension argument, one may extend 6 to T and obtain a
nondecreasing continuous function g 7 : Rt — Rt such that

[ellyo,2 < o7 ([[uollo)|uollo- (2.6)

Similarly, we can obtain (2.4).

On the other hand, integrate (2.5) with respect time over the interval (0, ¢), then
take supremum in ¢t € (0,77), we can obtain (2.3) which is better than (2.6). O

Next, we show that (1.1) is well-posed in Y3 7.

Proposition 2.2. For any uy € H3(T), (1.1) admits a unique solution u € Y3 .
Moreover, there exists a nondecreasing continuous function asr : Rt — R such
that

l[ullys » < asz([[uollo)uolls-

Proof. By Proposition 2.1, (1.1) admits a unique solution u € Y, r, we just need
to show further that u € Y5 1. For this purpose, let v = u, then

{ V¢ + Vggg — Vgr + (W0), =0, x €T, t>0, (2.7)

U(IZ?,O) — UO(I')a T € T,
where vg = —uf’ + uf — uouf, € HJ(T).

Proceeding as in the proof of Proposition 2.1, we see that (2.7) admits a unique
solution v € Yy 7. Moreover

[0]lvo.» < @0, ([luollo)[vollo- (2.8)

Now we claim that (2.8) holds.
In fact, it is not difficult that

lull oo 0, 7511 (1)) < Cllwl| g1 0,158 (T))

< C (lull 2o, (1)) + vl 20,7501 (7)) 5
and
[uallg = (uzs ua)o = —(u, taz)o < llullolluzs|lo.
Then for any € > 0,

lute|| oo (0,52 (1)) < llull Loe (0,752 (1)) 1| oo (0,750 (1))
1 1
< ||u||L°°(O,T;L2(T))”Uac”zoc(oj;m('ﬂ‘))”wa”ioo(oj;m(qr))

5 3
< lull 2o 0,222y el Lo 0,722y

< él|ugz || Lo 0,752 (T)) + C(E)||U||ioo(o,T;L2(1r))~
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Therefore from the equation v = —ugzs + Uge — UU,, We have
[llzoe 0,732 (my) <ClluallLoe 0,81 ()
SC(H% — || Los (0,711 (T)) + ||UHL°°(O,T;H1(']1‘)))
<O (tne = thasll 02220 + Il )
(||v + uugl Lo 0,752 (1)) + 1wl oo 0,1 Hl(’]I‘))>
(||U||L°°(o 1i22(m)) + Ul Loo (0,71 (1))
+ elltuzz || o< 0,112 () + C(E)\|U||ioo(o,T;L2(T)))~ (2.9)

Choosing ¢ = 5, according to (2.3) and (2.8), there exists a nondecreasing
continuous function as 7 : R* — R such that

wll oo 0,22 (my) < @3, ([[uollo)[uolls-
This implies
lutta|| 20,7, (1)) < Cllullrzo,7;8 () [l o< (0,7 52 (T)) (2.10)
< Clluolloas,([luollo)[luolls-

Computations similar (but more complicated) to those in (2.9) give

||U||L°°(0,T;H3(’H‘)) <C (”UHLC’C(O,T;LZ(T)) + ||U||9Loo(o,T;H2(1r)) + ||U||L°°(0,T;H2(T))) :
Using the same argument as in (2.9), we get

lull 20,7389 (Ty) < C ([0l 20,380 (1)) + Nwtte | 220,750 (1)) + wll Low 0,713 (Ty) ) -

Consequently, there exists a nondecreasing continuous function azp : RT — RT
such that

llull oo (0,713 (y) + Nl 220,75 152 (1)) < @s,7(|[uollo)|luolls-
Finally, we can state the main result in this section. O

Theorem 2.1. For any up € H§(T), (1.1) admits a unique solution u € Ys .
Moreover, there exists a nondecreasing continuous function asr : RT — R such
that

[ully, = < s ([[uollo)uolls-

Proof. The cases s = (0 and s = 3 have been proved in Proposition 2.1 and Propo-
sition 2.2. The cases of 0 < s < 3 follows by (2.4) and the nonlinear interpolation
theory [1]. The other cases of s can be proved similarly. O

3. Controllability

In this section, we consider the exact controllability of the KdV-B equation

{ut—i-uwm—um—i—uum:h, zeT, t>0,

u(z,0) = up(z), z e T. (3.1)
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The exact controllability of the linear system can be obtained by the classical
duality approach. Then by a fixed-point argument, we get the exact controllability
of the nonlinear system.

First, let us consider the linear system

(3.2)

ut‘i’umxa:*umr:h, IIZET,t>07
u(z,0) = up(x), x e T.

Proposition 3.1. Let s > 0, T > 0 be given. For any ug,u; € HF(T), there exists
a control input h € L*(0,T; Hy~*(T)) such that (3.2) admits a solution u € Yy r
satisfying

u(z,0) = ug(z), u(z,T) =u1(x)

for any x € T.

Proof. According to Lemma 2.1, solution of (3.2) belongs to Y; 1 for ug € H§(T)
and h € L?(0,T; H3~(T)).
Motivated by [6], we consider the adjoint system

{Utvrxzvmm07 xET,t>O, (33)

v(z,T) = vp(z), x e T.
First we claim that for any T' > 0, the system (3.3) admits a unique solution

(NS Y—S,T-
In fact, let v(z,t) = v(x, T — t), then v solves

fﬁtfa"c:cmfammzov IETat>O7
v(z,0) = vp(z), x e T.

Similar as in Section 2, the linear operator A defined by Ay = Vgzz Ve also gen-
erates a semigroup in H; *(T). Thus for any vy € H;*(T), v € C([0,T]; H, *(T)).
Moreover, by a similar method as in Lemma 2.1, we have

[olly_..r < Cllorll-s. (3.4)
Taking the duality product of each term of (3.3) by v yields
T
<Ua u>—s,s |g: / <Ua h>—s+1,s—1dta
0
where (- ,-)_; s denotes the duality pairing (- ,o>HJS(T)’H§.(T). Without loss of gen-

erality, we can assume that ug = 0. Following the classical duality approach, it is
sufficient to prove the following observability inequality

T
mﬁzgcé|wgﬂm (3.5)

Taking the scalar product of each term of by tv in H; *(T) results in

T 1 T T
Slorl =5 [ ot + [ el .
0 0
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Combined with the Poincaré inequality, this gives (3.5). O
Now we can obtain the local exact controllability of the nonlinear system (3.1).

Proof of Theorem 1.1. From Proposition 3.1, by a classical functional analysis ar-
gument [3], one can construct a continuous operator ® : Hg(T) — L2(0,T; H5~*(T))
such that for any u; € H{(T), the solution u of (3.2) associated with ug = 0 and
h = ®(uy) satisfies u(T) = uy. Let us denote by W (h) the corresponding trajectory.
We know from Lemma 2.1 that W is continuous from L?(0,T; H3~'(T)) into Y 7.

Pick any wg,uy € HE(T) satisfying ||uglls < d, |luills < & with 6 to be deter-
mined. For any v € Y, 7, we set

It is easy to deduce that

t
llw(w)ls SCH/O S(t = 7)(uug)(r)dr|ly, » < Clluly, ..,

Iwﬁo—w@MkéCHAAﬂt—ﬂ@wx—v%Xﬂdrnj

<Cllu+vlly, rllu=lly, -

If we choose h = ®(uy — S(T)up — w(u)), then

S(t)uo —/O S(t — 7)(uuy)(7)dr + W (h)(t) = { o, if =0,

Uy, ift="T.

We are led to consider the nonlinear map

t
D(u) = S(t)ug — / S(t — 7)(uug)(T)dr + W (h)(t).
0
Let
Br={uveYr: |uly., <R}
For all u,v € Bgp,
1T (w)]
<C (lluolls + lluteall 10,7515 (7y) + 1@ (w1 — S(T)ug — w(w)) || L2 (0,715~ (T)))
<Ci([luolls + llualls) + Callully2,
<2010 + O R?,
IT'(u) — L(v)]
<C||®(w(u) —w@)llL20,7;m5-1(T)) + Ut — vvl[L1(0,7:85 (T))

<Chllu + vlly, o llu v
<2CoR|lu - vlly, -

Ys. T

Ys, 1

Ys. 1

Picking R = 4C,6 and § = (8C1Cs)~!, we obtain that for ug,u; satisfying
lluolls <6, ||ui]ls < 6 and u,v € Br that

1
Vor < 5llu—cl

IT(w) = T'(v)]

Yor SR, T(w)]

s, T =

Y. -
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It follows from the contraction mapping theorem that I has a unique fixed point u
in Br. Then u satisfies (3.1) with h = ®(u; — S(T)up — w(u)) and u(T) = uy, as

desired.
The proof of Theorem 1.1 is completed. O
References
[1] J. Bergh and J. Lofstrom, Interpolation Spaces, An Introduction, Springer-

2]

[10]
[11]

[12]

Verlag, New York, 1976.

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets
and applications to non-linear evolution equations, part II: the KdV equation,
Geom. Funct. Anal., 3(1993)(3), 209-262.

J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monograph-
s, American Mathematical Society, Providence, 136(2007).

C. Laurent, L. Rosier and B. Y. Zhang, Control and stabilization of the
Korteweg-de Vries equation on a periodic domain, Comm. Partial Differential
Equations, 35(2010)(4), 707-744.

M. Li and H. Wang, Controllability of nonlinear third order dispersion equa-
tion with distributed delay, Journal of Applied Analysis and Computation,
2(2012)(4), 415-421.

F. Linares and L. Rosier, Control and stabilization of the Benjamin-Ono equa-
tion on a periodic domain, Trans. Amer. Math. Soc., 367(2015)(7), 4595-4626.

L. Molinet and F. Ribaud, On the low reqularity of the Korteweg de Vries-
Burgers equation, International Mathematics Research Notices, 37(2002),
1979-2005.

L. Molinet and F. Ribaud, The Cauchy problem for dissipative Korteweg de
Vries equations in Sobolev spaces of negative order, Indiana Univ. Math. J.,
50(2001)(4), 1745-1776.

L. Molinet and S. Vento, Sharp ill-posedness and well-posedness results for
the KdV-Burgers equation: the periodic case, Trans. Amer. Math. Soc.,
365(2013)(1), 123-141.

E. Ott and N. Sudan, Damping of solitary waves, Phys. Fluids, 13(1970)(6),
1432-1434.

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differen-
tial Equations, Springer-Verlag, Berlin, 1983.

L. Rosier and B. Y. Zhang, Global stabilization of the generalized Korteweg-de
Vries equation posed on a finite domain, SITAM J. Control Optim., 45(2006)(3),
927-956.

D. L. Russell and B. Y. Zhang, Controllability and stabilizability of the third
order linear dispersion equation on a periodic domain, STAM J. Control Optim.,
31(1993)(3), 659-676.

D. L. Russell and B. Y. Zhang, Exact controllability and stabilizability of the
Korteweg-de Vries equation, Trans. Amer. Math. Soc., 348(1996)(9), 3643
3672.



