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IMPROVED BI-ACCELERATOR DERIVATIVE
FREE WITH MEMORY FAMILY FOR
SOLVING NONLINEAR EQUATIONS

J. P. Jaiswal

Abstract The object of the present paper is to accelerate the R-order con-
vergence of with memory derivative free family given by Lotfi et al. (2014)
without adding any new evaluations. To achieve this goal one more iterative
parameter is introduced, which is calculated with the help of Newton’s inter-
polatory polynomial. It is shown that the R-order convergence of the proposed
scheme is increased from 12 to 14 without any extra evaluation. Smooth as
well as non-smooth examples are presented to confirm theoretical result and
significance of the new scheme.
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1. Introduction

Finding the root of a nonlinear equations or systems is an interesting task in numer-
ical analysis and applied scientific branches, which has attracted so much attention
recently. In the last years, iterative techniques have been applied in many diverse
fields as economics, engineering, physics, dynamical models, and so on. Some nice
applications of iterative methods has been presented in preliminary orbit determi-
nation for deducing the orbit of the minor planet Ceres [3, 4], global positioning
system [1], integral equations [13], nonlinear partial differential equation [15] and
denoising [2] etc. Newton’s method is the most well-known method for solving non-
linear equations. However, the existence of first derivative is compulsory for the
convergence of Newton’s method, which bounds its applications in practice. To
overcome on this difficulty, Steffensen replaced the first derivative of the function
in the Newton’s iterate by forward finite difference approximation. Both the meth-
ods possess the quadratic convergence and the same efficiency but second one is
derivative free. Multipoint iterative methods for solving nonlinear equations are of
great practical importance since they overcome theoretical limits of one-point meth-
ods concerning the convergence order and computational efficiency. In the case of
multipoint without memory methods, this requirement is closely connected with
results of Kung and Traub [6], who conjectured that the order of convergence of
any multipoint method without memory, consuming n+1 function evaluations per
iteration, cannot exceed the bound 2n (called optimal order). Multipoint methods
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with this property are usually called optimal methods. The vast literature is avail-
able on optimal methods for computing the solution of nonlinear equations. In the
recent past, researchers have focused to optimize the existing non-optimal iterative
methods without any additional evaluation of functions and derivatives.

The convergence of the multipoint optimal without memory methods can be
accelerated without additional computations using information from the points at
which old data are reused. Letmk represent the r+1 quantities xk, t1(xk), t2(xk), ...,
tr(xk) and define an iterative process by

xk+1 = F (mk;mk−1,mk−2, ...,mk−r).

Following Traub’s terminology [17], F is called a multipoint iterative function with
memory. To compare iterative methods theoretically, Owtrowski [12] introduced
the idea of efficiency index and given by d1/n, where d is the order of convergence
and n number of function evaluations per iteration. In other words, we can say
that an iterative method with higher efficiency index is more efficient. Probably
Traub initiated the idea of with memory method in his book [17]. To accelerate
the convergence order of Steffensen method without using additional evaluation γ is
recursively calculated by self-accelerating method. Let γ0 is given initial parameter
and consider

ϕk =
f(xk + γkf(xk))− f(xk)

γkf(xk)
, k = 0, 1, 2, ...,

xk+1 = xk − f(xk)

ϕk
. (1.1)

where

γk = − 1

ϕk−1
, k = 1, 2, ....

Traub derived that order of convergence of this method is 2.414. And thus the
order of convergence of (1.1) with memory is more than that of Steffensen method,
which also needs two function evaluations per iteration. Motivated by this idea
some researchers have developed with memory methods to increase the efficiency of
the existing optimal order without memory methods by using iterative parameter,
such as ( [9, 10,14]).

With memory methods of higher efficiencies with low computational load can
be established introducing multi accelerators [8, 16]. To get more efficient method,
we first modify slightly existing optimal without memory methods in such a way
that their given corresponding error equations have the most appropriate forms for
achieving as high as possible efficiency index when they are extended to methods
with memory. Then, based on interpolation, we consider some accelerators so that
R-order of convergence raised to higher and higher level and therefore efficiency
index will be certainly improved. In the just recent paper [7], a family of three-
point derivative free without memory method of optimal eighth-order has been
established and then one self-accelerating parameter is introduced to get modified
with memory family of increased order twelve without any extra evaluation. This
paper is devoted to the further improvement of with memory family by inserting
one more iterative parameter.

In this paper we present an improvement of the existing with memory family,
constructed by introducing one more iterative parameter which is calculated with
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help of Newton’s interpolatory polynomial of degree five. In section 2, a family
of three-point methods with memory with improved order of convergence from 12
to 14 without adding more evaluations is presented. The comparisons of absolute
errors and computational efficiencies are given in section 3 to illustrate convergence
behavior. Finally, we give the concluding remark.

2. Improved Family and Convergence Analysis

In the convergence analysis of the new method, we employ the notation used in
Traub’s book [17]: if mk and nk are null sequences and mk/nk → C, where C is
a non-zero constant, we shall write mk = O(nk) or mk ∼ Cnk . We also use the
concept of R-order of convergence introduced by Ortega and Rheinboldt [11]. Let
xk be a sequence of approximations generated by an iterative method (IM). If this
sequence converges to a zero ξ of function f with the R-order OR((IM), ξ) ≥ r, we
will write

ek+1 ∼ Dk,re
r
k,

where Dk,r tends to the asymptotic error constant Dr of the iterative method (IM)
when k → ∞. Very recently, Lofti et al. established the following iterative method
without memory [7]:

wk = xk + βf(xk), k = 0, 1, 2, ...

yk = xk − f(xk)

f [xk, wk]
,

zk = yk −H(uk, vk)
f(yk)

f [yk, wk]
,

xk+1 = zk −W (sk)
f(zk)

f [zk, yk] + f [wk, zk, yk](zk − yk)
, (2.1)

where β ∈ R, uk = f(yk)/f(xk), vk = f(yk)/f(wk), sk = f(zk)/f(xk). The authors
claim that in their paper [7] that this method achieve eighth-order convergence when
the weight functions satisfy the following conditions

H(0, 0) = Hu(0, 0) = Huu(0, 0) = 1,

Hv(0, 0) = Hvv(0, 0) = 0,

Huv(0, 0) = 2,

W (0) = W ′(0) = 1. (2.2)

And it’s error expression is

ek+1 = c22c3(1 + βc1)
4((9 + βc1(7 + βc1))c

3
2 + 2c2c3 − c4)e

8
k +O(e9k), (2.3)

where ci = f(i)(ξ)
i! . But for the above conditions on the weight functions, it is of

seventh-order convergence with error expression given by

ek+1 = − (c42(1 + βc1)
5((1 + βc1)c

2
2 − 2c1c3))

4c61
e7k +O(e8k). (2.4)
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In fact it of the eighth-order convergence when the weight functions satisfy the
conditions

H(0, 0) = Hu(0, 0) = 1,

Hv(0, 0) = Hvv(0, 0) = 0,

Huu(0, 0) = Huv(0, 0) = 2, (2.5)

W (0) = W ′(0) = 1.

Any way this may be typing mistake. To improve convergence order as well as
efficiency index without adding any new function evaluations, the authors in the
same paper replaced real parameter β by iterative parameter βk and assumed (1 +
βkc1) = 0. They have done this using βk = −1

c1
. But ξ is unknown here. Fortunately

more accurate approximations of ξ are obtained by sequence xk , wk etc. and
therefore one can get better approximation of c1. In their work they used c1 ≈ c̃1
and c̃1 = N ′

4(xk), where N4(t) = N4(t;xk, zk−1, yk−1, wk−1, xk−1). And thus one
parameter family with memory is given by
For given x0, β0, consider

wk = xk + βkf(xk), k = 0, 1, 2, ...

yk = xk − f(xk)

f [xk, wk]
,

zk = yk −H(uk, vk)
f(yk)

f [yk, wk]
,

xk+1 = zk −W (sk)
f(zk)

f [zk, yk] + f [wk, zk, yk](zk − yk)
,

βk+1 =
−1

N ′
4(xk+1)

, (2.6)

where uk, vk, sk are defined as previous. They showed that under the same condi-
tions on the weight functions the order of this scheme has been increased to twelve.
The result of which is that the efficiency index is improved form 81/4 = 1.6817 to
121/4 = 1.8612. Motivated by this paper one natural question raised in our mind.
Is it possible to find more efficient method using the same number of evaluations?
We have found the answer of this question in positive. To justify our answer, we
consider the following two-parametric with memory scheme
For given x0, β0, α0 consider

yk = xk − f(xk)

f [xk, wk] + αkf(wk)
, n = 0, 1, 2, ...

zk = yk −H(uk, vk)
f(yk)

f [yk, wk] + αkf(wk)
,

xk+1 = zk −W (sk)
f(zk)

f [zk, yk] + f [wk, zk, yk](zk − yk) + αkf(zk)
, (2.7)

where wk = xk+βkf(xk), uk, vk, sk are defined as above. Under the same conditions
on the weight functions the error expression of this family is given by

ek+1 = M3(1 + βkc1)
4(αkc1 + c2)

3e7k +O(e8k), (2.8)
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where M3 = −2αk(2α
2
kc1+2αkc2+c3)

c41
. Later we will show that by imposing one more

iterative parameter in the existing with memory family R-order convergence is in-
creased by two. To show this, we consider

βk = − 1
c1

≈ −1
N ′

4(xk)
,

αk = − c2
c1

≈ −N ′′
5 (wk)

N ′
5(wk)

, (2.9)

where
N4(t) = N4(t;xk, zk−1, yk−1, xk−1, wk−1),
N5(t) = N5(t;wk, xk, zk−1, yk−1, wk−1, xk−1).

And hence finally the proposed modified family is given by
For given x0, β0, α0 consider

wk = xk + βkf(xk), k = 0, 1, 2, ...

yk = xk − f(xk)

f [xk, wk] + αkf(wk)
,

zk = yk −H(uk, vk)
f(yk)

f [yk, wk] + αkf(wk)
,

xk+1 = zk −W (sk)
f(zk)

f [zk, yk] + f [wk, zk, yk](zk − yk) + αkf(zk)
,

βk+1 =
−1

N ′
4(xk+1)

,

αk+1 =
−N ′′

5 (wk+1)

N ′
5(wk+1)

,

(2.10)

where uk, vk, sk, N4(t) and N5(t) are defined as above. Now we denote

ek = xk − ξ, ek,z = zk − ξ, ek,y = yk − ξ, ek,w = wk − ξ,

where ξ is the exact root. Before going to main result, we first prove the following
two lemmas:

Lemma 2.1. The estimate 1 + βkc1 ∼ − c5
c1

ek−1 ek−1,z ek−1,y ek−1,w.

Proof. Suppose that there are s nodes t0, t1 . . . , ts from the interval D = [a, b],
where a is the minimum and b is the maximum of these nodes, respectively. Then
for some ζ ∈ D, the error of Newton’s interpolation polynomial Ns(t) of degree s is
given by

f(t)−Ns(t) =
f (s+1)(ζ)

s+ 1!

s∏
j=0

(t− tj). (2.11)

For s = 4 the above equation assumes the form (keeping in the mind t0 = xk,
t1 = zk−1, t2 = yk−1, t3 = xk−1, t4 = wk−1)

f(t)−N4(t) =
f5(ζ4)

5!
{(t− xk)(t− zk−1)(t− yk−1)(t− xk−1)(t− wk−1)} . (2.12)

Differentiating equation (2.12) with respect to t and putting t = xk, we get

f ′(xk)−N ′
4(xk) =

f5(ζ4)

5!
{(xk − zk−1)(xk − yk−1)(xk − xk−1)(xk − wk−1)} .(2.13)

Now
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xk − zk−1 = (xk − ξ)− (zk−1 − ξ) = ek − ek−1,z.

Similarly

xk − yk−1 = ek − ek−1,y,

xk − xk−1 = ek − ek−1,

xk − wk−1 = ek − ek−1,w.

Using these relations in the equation (2.13) and simplifying we get

N ′
4(xk) ∼ c1 + 2c2ek − c5 ek−1 ek−1,z ek−1,y ek−1,w. (2.14)

And thus

1 + βkc1 = 1− c1
N ′

4(xk)
∼ 1− c1

c1 + 2c2ek − c5 ek−1 ek−1,z ek−1,y ek−1,w
,

or

1 + βkc1 ∼ −c5
c1

ek−1 ek−1,z ek−1,y ek−1,w.

(2.15)

Hence we have the result.

Lemma 2.2. The estimate αkc1 + c2 ∼ c6 ek−1 ek−1,z ek−1,y ek−1,w.

Proof. For s = 5 and t0 = wk, t1 = xk, t2 = zk−1, t3 = yk−1, t4 = wk−1,
t5 = xk−1, the equation (2.11) becomes

f(t)−N5(t)

=
f6(ζ5)

6!
{(t− wk)(t− xk)(t− zk−1)(t− yk−1)(t− wk−1)(t− xk−1)} .

(2.16)

Differentiating equation (2.16) with respect to t and putting t = wk, we have

f ′(wk)−N ′
5(wk)

=
f6(ζ5)

6!
{(wk − xk)(wk − zk−1)(wk − yk−1)(wk − wk−1)(wk − xk−1)} .

(2.17)

The above equation can be rewritten as

N ′
5(wk) ∼ c1 + 2c2ek,w + c6 ek ek−1,z ek−1,y ek−1,w ek−1. (2.18)

Now twice differentiating (2.16) with respect to t and putting t = wk and proceeding
in the same we get

N ′′
5 (wk) ∼ 2c2

[
1 +

3c3
c2

ek,w − c6
c2

ek−1,z ek−1,y ek−1,w ek−1

]
. (2.19)

Hence

αkc1 + c2 = c2 −
N ′′

5 (wk)

N ′
5(wk)

c1

∼ c2 −
2c2

[
1 + 3c3

c2
ek,w − c6

c2
ek−1,z ek−1,y ek−1,w ek−1

]
2 [c1 + 2c2ek,w + c6 ek ek−1,z ek−1,y ek−1,w ek−1]

c1
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or
αkc1 + c2 ∼ c6 ek−1 ek−1,z ek−1,y ek−1,w. (2.20)

Thus we proved the lemma.
By using the above lemmas now we are going to prove the main result.

Theorem 2.1. If an initial approximation x0 is sufficiently close to a simple zero
ξ of f , then the R-order of convergence of three-point method (2.10) with memory
is at least fourteen.

Proof. First we assume that the R-order of convergence of sequence xk, wk, yk,
zk is at least r, r1, r2 and r3, respectively. Hence

ek+1 ∼ Dk,re
r
k ∼ Dk,r(Dk−1,re

r
k−1)

r ∼ Dk,rD
r
k−1,re

r2

k−1, (2.21)

and

ek,w ∼ Dk,r1e
r1
k ∼ Dk,r1(Dk−1,re

r
k−1)

r1 ∼ Dk,r1D
r1
k−1,re

rr1
k−1. (2.22)

Similarly

ek,y ∼ Dk,r2D
r2
k−1,re

rr2
k−1, (2.23)

ek,z ∼ Dk,r3D
r3
k−1,re

rr3
k−1. (2.24)

By virtue of the above equation, lemma (2.1) and (2.2) implies that

1 + βkc1 ∼ −c5
c1

(Dk−1,r3)(Dk−1,r2)(Dk−1,r1)e
r3+r2+r1+1
k−1 , (2.25)

and

αkc1 + c2 ∼ c6(Dk−1,r3)(Dk−1,r2)(Dk−1,r1)e
r3+r2+r1+1
k−1 , (2.26)

respectively. For the scheme (2.10), it can be derived that

ek,w ∼ (1 + βkc1)ek, (2.27)

ek,y ∼ M1(1 + βkc1)(αkc1 + c2)e
2
k, (2.28)

where M1 = 1/c1,

ek,z ∼ M2(1 + βkc1)
2(αkc1 + c2)e

4
k, (2.29)

where M2 = −2α2
kc1+2αkc2+c3

c21
and

ek+1 ∼ M3(1 + βkc1)
4(αkc1 + c2)

3e7k, (2.30)

where M3 is given just below to (2.8). Combining the eqns. (2.27) and (2.25), we
have

ek,w ∼ −c5
c1

(Dk−1,r3)(Dk−1,r2)(Dk−1,r1)e
r3+r2+r1+1
k−1 (Dk−1,re

r
k−1),

or
ek,w ∼ −c5

c1
(Dk−1,r3)(Dk−1,r2)(Dk−1,r1)(Dk−1,r)e

r3+r2+r1+r+1
k−1 . (2.31)
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Using (2.25) and (2.26) in eqn. (2.28) we get

ek,y ∼ −M1

(
c5
c1

)
(Dk−1,r3)(Dk−1,r2)(Dk−1,r1)e

r3+r2+r1+1
k−1

c6(Dk−1,r3)(Dk−1,r2)(Dk−1,r1)e
r3+r2+r1+1
k−1 (Dk−1,re

r
k−1)

2,

or

ek,y ∼ N1(D
2
k−1,r3)(D

2
k−1,r2)(D

2
k−1,r1)(D

2
k−1,r)e

2(r3+r2+r1+1)+2r
k−1 , (2.32)

where N1 = −M1

(
c5c6
c1

)
. Similarly

ek,z ∼ N2(D
3
k−1,r3)(D

3
k−1,r2)(D

3
k−1,r1)(D

4
k−1,r)e

3(r3+r2+r1+1)+4r
k−1 , (2.33)

where N2 = M2

(
c5
c1

)2

.c6 and

ek+1 ∼ N3(D
7
k−1,r3)(D

7
k−1,r2)(D

7
k−1,r1)(D

7
k−1,r)e

7(r3+r2+r1+1)+7r
k−1 , (2.34)

where N3 = M3

(
c5
c1

)4

.c36. Now comparing the equal powers of ek−1 in eqns. (2.22)-

(2.31), (2.23)-(2.32), (2.24)-(2.33) and (2.21)-(2.34), we find the following system of
nonlinear equations:

rr1 − r − (r3 + r2 + r1 + 1) = 0,

rr2 − 2r − 2(r3 + r2 + r1 + 1) = 0,

rr3 − 4r − 3(r3 + r2 + r1 + 1) = 0,

r2 − 7r − 7(r3 + r2 + r1 + 1) = 0.

Solving these equations, we get r1 = 2, r2 = 4, r3 = 7, r = 14. And hence we proved
the main result.

Note 1: The efficiency index of the proposed scheme (2.10) is 141/4 = 1.9343
which is more than 121/4 = 1.8612 of with memory family given by Lotfi et al. [7].

3. Numerical Examples and Conclusion

In this section we compare the proposed with memory family to existing scheme by
taking some particular choices of weight functions H(uk, vk) and W (sk). Lotfi et
al. [7] have considered the following weight functions for numerical testing in the
scheme (2.6):

H1(uk, vk) = 1 + uk + 2ukvk + u2
k,

H2(uk, vk) =
1

1− uk − 2ukvk
,

W1(sk) = cos(sk) + sin(sk),W2(sk) =
1

1− sk
,

W3(sk) = 1 + sk,W4(sk) = esk .

To show the efficiency of the proposed method here we choose the same weight
functions for the family (2.10). Since the scheme is derivative free, so we apply the
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proposed family to solve a smooth as well as a non-smooth nonlinear equations and
compared with the existing with memory methods. Numerical testing have been
carried out using variable precision arithmetic in MATHEMATICA 8 with 500
significant digits. The computational order of convergence (COC) is defined by

COC =
ln(|f(xk)/f(xk−1)|)

ln(|f(xk−1)/f(xk−2)|)
.

To test the performance of new method consider the following two nonlinear func-
tions (which are taken from [5] and [7]):

1.f1(x) = sin(πx)ex
2+x cos(x)−1 + x log(x sin(x) + 1),

2.f2(x) =

{
10(x4 + x), x < 0

−10(x3 + x), x ≥ 0.

The absolute error for the first three iterations are given in Tables 1-2. In the
table ae ± b stand for a × 10±b. Note that a large number of three-step derivative
free (with and without memory) methods are available in the literature. But the
methods which have been tested for non-smooth functions are very very rare and
this clearly reveals the significance of this article. From the the theoretical result,
we can conclude that the order of convergence of the without memory family can
be made more higher than the existing with memory family by imposing more self-
accelerating parameters without any additional calculations and the computational
efficiency of the presented with memory method becomes high. The R-order of
convergence is increased from 12 to 14 in accordance with the quality of the applied
accelerating method proposed in this paper. We can see that the self-accelerating
parameters play a key role in increasing the order of convergence of the iterative
method.

Table 1. Comparison of the absolute error in first, second and third iterations for f1(x) with x0 = 0.6,
ξ = 0, β0 = 0.1, α0 = 0.01.

Method |x1 − ξ| |x2 − ξ| |x3 − ξ| COC
Lotfi et al. Method [7] with H1,W1 0.16408e-1 0.34379e-20 0.25814e-245 12.057
Lotfi et al. Method [7] with H1,W2 0.11711e-1 0.58655e-21 0.15632e-254 12.105
Lotfi et al. Method [7] with H1,W3 0.14751e-1 0.20948e-20 0.67504e-248 12.074
Lotfi et al. Method [7] with H1,W4 0.13088e-1 0.11136e-20 0.34311e-251 12.091
Lotfi et al. Method [7] with H2,W1 0.28676e-1 0.24880e-18 0.53628e-223 12.004
Lotfi et al. Method [7] with H2,W2 0.18955e-1 0.53482e-19 0.51066e-231 12.087
Lotfi et al. Method [7] with H2,W3 0.25205e-1 0.18570e-18 0.15906e-224 12.035
Lotfi et al. Method [7] with H2,W4 0.21713e-1 0.10425e-18 0.15467e-227 12.065

Proposed Method with H1,W1 0.16158e-1 0.12243e-25 0.58421e-365 14.072
Proposed Method with H1,W2 0.11234e-1 0.27610e-29 0.32316e-418 14.089
Proposed Method with H1,W3 0.14420e-1 0.26632e-26 0.99116e-375 14.091
Proposed Method with H1,W4 0.12675e-1 0.20826e-27 0.18137e-391 14.122
Proposed Method with H2,W1 0.27043e-1 0.71237e-23 0.17535e-325 14.031
Proposed Method with H2,W2 0.17473e-1 0.10211e-24 0.32654e-352 14.101
Proposed Method with H2,W3 0.23627e-1 0.26998e-23 0.14620e-331 14.056
Proposed Method with H2,W4 0.20192e-1 0.59893e-24 0.51508e-341 14.080
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Table 2. Comparison of the absolute error in first, second and third iterations for f2(x) with x0 = −0.8,
ξ = −1, β0 = 1, α0 = 0.01.

Method |x1 − ξ| |x2 − ξ| |x3 − ξ| COC
Lotfi et al. Method [7] with H1,W1 0.18654e+0 0.17935e-6 0.27411e-77 11.478
Lotfi et al. Method [7] with H1,W2 0.75427e+0 0.16246e+0 0.61778e-1 1.1238
Lotfi et al. Method [7] with H1,W3 0.34083e+0 0.22151e-4 0.34568e-52 10.733
Lotfi et al. Method [7] with H1,W4 0.51834e+0 0.14925e-3 0.30384e-42 9.8489
Lotfi et al. Method [7] with H2,W1 0.12278e+0 0.13520e-8 0.92299e-103 11.682
Lotfi et al. Method [7] with H2,W2 0.95479e-1 0.57537e-10 0.32577e-119 11.747
Lotfi et al. Method [7] with H2,W3 0.11261e+0 0.48192e-9 0.38838e-108 11.709
Lotfi et al. Method [7] with H2,W4 0.99856e-1 0.10515e-9 0.45221e-116 11.738

Proposed Method with H1,W1 0.18185e+0 0.64162e-9 0.58263e-126 13.607
Proposed Method with H1,W2 0.71281e+1 0.46083e+1 0.37102e+1 0.4717
Proposed Method with H1,W3 0.33349e+0 0.24624e-6 0.87589e-90 13.052
Proposed Method with H1,W4 0.50787e+0 0.17376e-5 0.66509e-78 12.386
Proposed Method with H2,W1 0.12565e+0 0.91112e-11 0.78990e-152 13.770
Proposed Method with H2,W2 0.97215e-1 0.39968e-12 0.77183e-171 13.840
Proposed Method with H2,W3 0.11510e+0 0.31706e-11 0.30163e-158 13.797
Proposed Method with H2,W4 0.10173e+0 0.70077e-12 0.20027e-167 13.829
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