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Abstract In this paper, the fractional complex transform and the
(

G′

G

)
-

expansion method are employed to solve the time-fractional modfied Korteweg–
de Vries equation (fmKdV), Sharma-Tasso-Olver, Fitzhugh-Nagumo equation-
s, where G satisfies a second order linear ordinary differential equation. Exact
solutions are expressed in terms of hyperbolic, trigonometric and rational func-
tions. These solutions may be useful and desirable to explain some nonlinear
physical phenomena in genuinely nonlinear fractional calculus.
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1. Introduction

The fractional calculus (fractional derivatives and fractional integrals) has been rec-
ognized as an effective modeling methodology for researchers. Fractional differential
equations are generalization of ordinary differential equations to arbitrary (nonin-
teger) order. In recent decades, fractional differential equations capture nonlocal
relations in space and time with power law memory kernels. Due to extensive appli-
cations in engineering and science, research in fractional differential equations has
become intense around the world. Some aspects of the fractional differential equa-
tions have been investigated by many authors [24,32,35]. Among the investigations
for fractional differential equations, research for seeking exact solutions solutions of
time-fractional differential equations is an important topic, which can also provide
valuable reference for other related research. In recently, some effective methods
for fractional calculus were appeared in open literature, such as the exp-function
method [5, 45], the fractional sub-equation method [14, 16, 38, 44], the (G′/G)-
expansion method [4, 9, 46], the fractional homotopy analysis method [10–12], the
Jacobi elliptic function method [13] and the first integral method [26]. Based on
these methods, a variety of fractional differential equations have been investigated
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and solved. However, there are quite a few direct approaches to exact solution-
s of nonlinear equations. For example, the transformed rational function method
and the multiple exp-function approach provide the most powerful approaches to
traveling wave and multiple wave solutions.

The fractional complex transform [17,18] is the simplest approach, it is to convert
the fractional differential equations into ordinary differential equations, making the
solution procedure extremely simple. Recently, the fractional complex transform
has been suggested to convert fractional order differential equations with modified
Riemann-Liouville derivatives into integer order differential equations, and the re-
duced equations can be solved by symbolic computation. The (G′/G)-expansion
method [20-23] can be used to construct the exact solutions for fractional differen-
tial equations. The present paper investigates for the applicability and efficiency
of the (G′/G)-expansion method on time-fractional differential equations. The aim
of this paper is to extend the application of the (G′/G)-expansion method to ob-
tain exact solutions to some fractional differential equations in broad science and
technology area.

In this paper, we will apply the (G′/G)-expansion method for solving fractional
partial differential equations in the sense of modified Riemann–Liouville derivative
by Jumarie [20, 21]. The Jumarie’s modified Riemann–Liouville derivative of order
α is defined by the following expression:

Dα
t f(t) =

{
1

Γ(1−α)
d
dt

∫ t
0
(t− ξ)−α(f(ξ)− f(0))dξ, 0 < α < 1,

(f (n)(t))(α−n), n ≤ α < n+ 1, n ≥ 1.
(1.1)

We list some important properties for the modified Riemann–Liouville derivative as
follows:

Dα
t x

γ =
Γ(1 + γ)

Γ(1 + γ − α)
xγ−α, γ > 0, (1.2)

Dα
t (cf(t)) = cDα

t f(t), c = constant, (1.3)

Dα
t {af(t) + bg(t)} = aDα

t f(t) + bDα
t g(t), (1.4)

where a and b constant.

Dα
t c = 0, c = constant. (1.5)

The rest of this paper is organized as follows. In Section 2, we give the defina-
tion of the (G′/G)-expansion method for solving time-fractional partial differential
equations. Then in Section 3-5, we use this method to construct exact solutions
for the time-fractional fmKdV, Sharma-Tasso-Olver, Fitzhugh-Nagumo equations.
Some conclusions are presented in Section 6.

2. The
(
G′

G

)
-expansion method for Fractional Partial

Differential Equations

In the following, we give the main steps of the
(
G′

G

)
-expansion method.

1. Suppose that a fractional partial differential equation, say in the independent
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variables t, x1, x2, ...., xn are given by

P (u1, ..., uk,
∂u1
∂t

, ...,
∂uk
∂t

,
∂u1
∂x1

, ...,
∂uk
∂x1

, ...,
∂u1
∂xn

, ...,
∂uk
∂xn

,

Dα
t u1, ..., D

α
t uk, D

β
x1
u1, ..., D

β
x1
uk, ..., D

β
xn
u1, ..., D

β
xn
uk, ...) = 0, (2.1)

where ui = ui(t, x1, x2, ...., xn), i = 1, 2, 3, ...., k are unknown functions, P is a poly-
nomial in ui and their various partial derivatives including fractional derivatives.

2. Li and He [17] proposed a fractional complex transform to convert fractional
differential equations into ordinary differential equations (ODE), so all analytical
methods devoted to the advanced calculus can be easily applied to the fractional
calculus. The traveling wave variable

Ui(ξ) = ui(t, x1, x2, ...., xn), ξ = ξ(t, x1, x2, ...., xn),

ξ =
ctα

Γ(1 + α)
+

τxβ1
Γ(1 + β)

+
δxγ2

Γ(1 + γ)
+ ...+

ψxφn
Γ(1 + φ)

, (2.2)

where c, τ, δ, ..., ψ are non zero arbitrary constants.
By using the chain rule

Dα
t u = σ

′

t

dU

dξ
Dα
t ξ,

Dα
xu = σ

′

x

dU

dξ
Dα
x ξ, (2.3)

where σ
′

t and σ
′

x are called the sigma indexes see [7], without loss of generality we
can take σ

′

t = σ
′

x = l, where l is a constant.

Substituting (2.2) with (2.3) and (1.2) into (2.2), equation (2.2) can be reduced
into an ODE;

Q(U1, ...., Uk, U
′

1 , ...., U
′
k , U

′′
11 , ..., U

′′
kk , .....) = 0, (2.4)

where the prime denotes the derivation with respect to ξ. If possible, we should
integrate Eq. (2.4) term by term one or more times.

3. Assume that the solution of equation (2.4) can be expressed by a polynomial

in
(
G′

G

)
as follows:

u(ξ) =
m∑

i=−m
ai

(
G′

G

)i
, am ̸= 0, (2.5)

where ai (i = 0,±1,±2, .....,±m) are constants, while G(ξ) satisfies the following
second order linear ordinary differential equation

G′′(ξ) + λG′(ξ) + µG(ξ) = 0, (2.6)

with λ and µ are being constants.

4. The positive integer m can be determined by considering the homogeneous
balance between the highest order derivaives and the nonlinar terms appearing in
equation (2.4).
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5. Substituting equation (2.5) into equation (2.4) and using equation (2.6) col-
lecting all terms with the same order of (G′/G) together. Then equating each co-
efficient of the resulting polynomial to zero, we obtain a set of algebraic equations
for ai (i = 0,±1,±2, .....,±m), c, τ, δ, ..., ψ, µ and λ.

6. Solving the equations system in step 5, and using equation then substituting
ai (i = 0,±1,±2, .....,±m), c, τ, δ, ..., ψ, µ, λ and the general solutions of equation
(2.6) into equation (2.5), we can get a variety of exact solutions of equation (2.1).

The adopted (G′/G)-expansion method is also actually the expansion method
using a special Riccati equation, since G′/G satisfies a Riccati equation if G solves
(2.6) in the manuscript. All explicit and exact solutions to general Riccati equations
are presented in [29]. More generally, Frobenius integrable decompositions [30] and
the invariant subspace method [28] will help in solving nonlinear equations.

3. Time-fractional fmKdV equation

Firstly, we consider the following time fractional fmKdV equation [25]

Dα
t u+ u2ux + uxxx = 0, t > 0, 0 < α ≤ 1, (3.1)

with the initial conditions as

u(x, 0) =
4
√
2k sin2(kx)

3− sin2(kx)
, (3.2)

where k is arbitrary constant, α is a parameter describing the order of the fractional
time-derivative. By using homotopy perturbation method (HPM), Hashim et al.
[1] have found approximate analytical solutions for fmKdV. By using differential
transform method, Kurulay and Bayram [25] have found new approximate analytical
solutions for fmKdV. In recent years, Guner and Cevikel applied the exp-function
method to this equation and obtained new exact solutions [15]. When α = 1, the
fractional fmKdV equation reduces to the mKdV equation. The mKdV equation
appears in many fields such as acoustic waves in certain anharmonic lattices, Alfvén
waves in a collisionless plasma, transmission lines in Schottky barrier, models of
traffic congestion, ion acoustic solitons, elastic media, shallow water model, plasma
science, biophysics etc [40]. By using the variational iteration method, Inc [19] has
found exact and numerical solutions and compared with those obtained by Adomian
decomposition method. Lastly, the extended tanh method was successfully used to
establish solitary wave solutions to this equation [2].

For our purpose, we introduce the following transformations;

u(x, t) = U(ξ), ξ = νx− ctα

Γ(1 + α)
, (3.3)

where c and ν are a non-zero constants.
Substituting (3.3) with (2.3) and (1.2) into (3.1), we can know that (3.1) reduced

into an ODE

− cU ′ + νU2U ′ + ν3U ′′′ = 0, (3.4)

where U ′ =
dU

dξ
. By once time integrating we find

ξ0 − cU + ν
U3

3
+ ν3U ′′ = 0, (3.5)
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where ξ0 is a integration constant.
Using the ansatz (3.5), for the linear term of highest order U ′′ with the highest

order nonlinear term U3. By simple calculation, we have balancing U ′′ with U3 in
(3.5) gives

m+ 2 = 3m, (3.6)

so that
m = 1. (3.7)

Suppose that the solutions of (3.5) can be expressed by a polynomial in
(
G′

G

)
as follows:

U(ξ) = a0 + a1

(
G′

G

)
, a1 ̸= 0. (3.8)

By using Eq. (2.6), from Eq. (3.8) we have

U ′′(ξ) = 2a1

(
G′

G

)3

+ 3a1λ

(
G′

G

)2

+ (2a1µ+ a1λ
2)

(
G′

G

)
+ a1λµ, (3.9)

and

U3(ξ) = a31

(
G′

G

)3

+ 3a0a
2
1

(
G′

G

)2

+ 3a20a1

(
G′

G

)
+ a30. (3.10)

Substituting Eq. (3.8)-(3.10) into Eq. (3.5), collecting the coefficients of
(
G′

G

)i
(i = 0, ..., 3) and set it to zero we obtain the system

1
3νa

3
1 + 2ν3a1 = 0,

νa0a
2
1 + 3ν3a1λ = 0,

νa20a1 − ca1 + ν3a1λ
2 + 2ν3a1µ = 0,

−ca0 + 1
3νa

3
0 + ν3a1λµ+ ξ0 = 0.

(3.11)

Solving this system by simple calculation gives

a0 = ±λ
2 iν

√
6, a1 = ±iν

√
6, c = ν3

2

(
−λ2 + 4µ

)
, ξ0 = 0, (3.12)

where λ and µ are arbitrary constants.
By using Eq. (3.12), expression (3.8) can be written as

U(ξ) = ±λ
2 iν

√
6± iν

√
6
(
G′

G

)
. (3.13)

Substituting general solutions of Eq. (2.6) into Eq. (3.13) we have two types of
exact solutions of the time fractional fmKdV equation as follows:

When λ2 − 4µ > 0,

U1,2(ξ) = ±iν
√

6λ2 − 24µ

2

(
C1 cosh

1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

C1 sinh
1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

)
,

(3.14)

where ξ = x− ν3(−λ2+4µ)
2Γ(1+α) tα and C1, C2 are arbitrary constants.
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When λ2 − 4µ < 0,

U3,4(ξ) = ±iν
√
−6λ2 + 24µ

2

(
−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ

)
,

(3.15)

where ξ = x− ν3(−λ2+4µ)
2Γ(1+α) tα and C1, C2 are arbitrary constants.

In particular, if C1 ̸= 0, C2 = 0, λ > 0, µ = 0, then U1,2 becomes

u1,2(x, t) = ±iν λ
√
6

2
coth

λ

2

(
x−

ν3
(
−λ2 + 4µ

)
2Γ(1 + α)

tα

)
, (3.16)

and U3,4 becomes

u3,4(x, t) = ±ν λ
√
6

2
cot

λ

2

(
x−

ν3
(
−λ2 + 4µ

)
2Γ(1 + α)

tα

)
. (3.17)

which are the solitary wave solutions of the time fractional fmKdV equation.

Remark 3.1. Comparing our results to the Guner’s results [15] it can be seen that
these results are new.

4. Time-fractional Sharma-Tasso-Olver equation

Secondly, we consider the nonlinear fractional Sharma-Tasso-Olver equation [36]

Dα
t u+ 3au2x + 3au2ux + 3auuxx + auxxx = 0, t > 0, 0 < α ≤ 1, (4.1)

where a is a arbitrary constant and subject to the initial condition

u(x, 0) = −
√
2B0 tan

(√
2B0

2
x

)
, (4.2)

where a and B0 are arbitrary constants, α is a parameter describing the order of the
fractional time-derivative. The function u(x, t) is assumed to be a causal function
of time. Song et al. have obtained the approximate analytical solutions of eq.(4.1)
with the variational iteration method, the adomian decomposition method and the
homotopy perturbation method. Esen et al. [6] have obtained the approximate
analytical solutions of this equation with the homotopy analysis method (HAM).
Guner and Cevikel [15] have used the Exp-function method to find the traveling
wave solutions of (4.1). Equation (4.1) has been investigated in [47] using the
fractional sub-equation method. By the improved (G′/G)-expansion method, Zayed
et al. [41] obtained abundant new exact solutions for the fractional STO equations.
In the case of α = 1, Eq. (4.1) reduces to the classical nonlinear STO equation.

We use the following transformations:

u(x, t) = U(ξ), ξ = x− ctα

Γ(1 + α)
, (4.3)

where c ̸= 0 is a constant.
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Substituting (4.3) with (2.3) and (1.2) into (4.1), equation (4.1) can be reduced
into an ODE,

− cU ′ + 3a(U ′)2 + 3aU2U ′ + 3aUU ′′ + aU ′′′ = 0, (4.4)

where U ′ =
dU

dξ
.

Integrating equation (4.4) with respect to ξ yields

ξ0 − cU + 3aUU ′ + aU3 + aU ′′ = 0 (4.5)

where ξ0 is a constant of integration.
By the same procedure as illustrated in the section 3, we can determine value of

m by balancing U3 and U ′′ in Eq.(4.3). We find m = 1. We can suppose that the
solutions of Eq. (4.1) is of the form

U(ξ) = a0 + a1

(
G′

G

)
, a1 ̸= 0. (4.5)

By using Eq. (4.5) and (2.6) it is derived that

U ′(ξ) = −a1
(
G′

G

)2

− a1λ

(
G′

G

)
− a1µ, (4.6)

and

U3(ξ) = a31

(
G′

G

)3

+ 3a0a
2
1

(
G′

G

)2

+ 3a20a1

(
G′

G

)
+ a30. (4.7)

Substituting Eq. (4.5)-(4.7) into Eq. (4.1), collecting the coefficients of
(
G′

G

)i
(i = 0, ..., 3) and set it to zero we obtain the system

2aa1 + aa31 − 3aa1 = 0,

−3aa0a1 + 3aa1λ+ 3aa0a
2
1 − 3aa21λ = 0,

−3aa0a1λ− 3aa21µ− ca1 + 3aa20a1 + 2aa1µ+ aa1λ
2 = 0,

−3aa0a1µ+ ξ0 − ca0 + aa30 + aa1λµ = 0.

(4.8)

We can solve this system by symbolic computation get sets of solutions.
Case 1:

a0 = λ, a1 = 2, a = a, c = aλ2 − 4aµ, ξ0 = 0, (4.9)

where λ and µ are arbitrary constants. By using Eq. (4.9), expression (4.5) can be
written as

U(ξ) = λ+ 2

(
G′

G

)
. (4.10)

Substituting general solutions of Eq. (2.6) into Eq. (4.10) we have three types
of exact solutions of the time-fractional Sharma-Tasso-Olver equation as follows:

When λ2 − 4µ > 0,

U1(ξ) =
√
λ2 − 4µ

(
C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

)
, (4.11)
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whereξ = x− aλ2−4aµ
Γ(1+α) t

α and C1, C2 are arbitrary constants. When λ2 − 4µ < 0,

U2(ξ) =
√
4µ− λ2

(
−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ

)
, (4.12)

where ξ = x− aλ2 − 4aµ

Γ(1 + α)
tα and C1, C2 are arbitrary constants

In particular, if C1 ̸= 0, C2 = 0, λ > 0, µ = 0, then U1 becomes

u1(x, t) = λ tanh
λ

2

(
x− aλ2 − 4aµ

Γ(1 + α)
tα
)
, (4.13)

and U2 becomes

u2(x, t) = −iλ tan λ
2

(
x− aλ2 − 4aµ

Γ(1 + α)
tα
)
. (4.14)

which are the solitary wave solutions of the time-fractional Sharma-Tasso-Olver
equation.

Case 2:

a0 = a0, a1 = 1, c = −3aa0λ− aµ+ 3aa20 + aλ2,

a = a, ξ0 = 2aa0µ− 3aa20λ+ 2aa30 + a0aλ
2 − aλµ, (4.15)

where λ and µ are arbitrary constants.
Substituting Eq. (4.9) into Eq. (4.5) yields

U(ξ) = a0 +

(
G′

G

)
. (4.16)

Substituting general solutions of Eq. (2.6) into Eq. (4.10) we have three types
of exact solutions of the time-fractional Sharma-Tasso-Olver equation as follows:

When λ2 − 4µ > 0,

U1(ξ) = a0 −
λ

2
+

1

2

√
λ2 − 4µ

(
C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

)
,

(4.17)

where ξ = x+
3aa0λ+ aµ− 3aa20 − aλ2

Γ(1 + α)
tα.

When λ2 − 4µ < 0,

U2(ξ) = a0 −
λ

2
+

1

2

√
4µ− λ2

(
−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ

)
,

(4.18)

where ξ = x+
3aa0λ+aµ−3aa20−aλ

2

Γ(1+α) tα.

When λ2 − 4µ = 0,

U3(ξ) = a0 −
λ

2
+

C2

C1 + C2ξ
. (4.19)
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In particular, if C1 ̸= 0, C2 = 0, λ > 0, µ = 0, then U1 becomes

u1(x, t) = a0 −
λ

2
+
λ

2
tanh

λ

2

(
x+

3aa0λ− 3aa20 − aλ2

Γ(1 + α)
tα
)
, (4.20)

and U2 becomes

u2(x, t) = a0 −
λ

2
− i

λ

2
tan

λ

2

(
x+

3aa0λ− 3aa20 − aλ2

Γ(1 + α)
tα
)
. (4.21)

which are the solitary wave solutions of the time-fractional Sharma-Tasso-Olver
equation.

Remark 4.1. We note that the exact solutions established in (4.13), (4.14), (4.19),
(4.20) and (4.21) are new exact solutions to the time-fractional Sharma-Tasso-Olver
equation.

5. Time fractional Fitzhugh-Nagumo equation

Thirdly, we take into account the fractional Fitzhugh-Nagumo equation

∂αu

∂tα
=
∂2u

∂x2
+ u(1− u)(u− ψ), t > 0, 0 < α ≤ 1, x ∈ R, (5.1)

which is an important nonlinear reaction-diffusion equation, applied to model the
transmission of nerve impulses [8,33], and also used in biology and the area of pop-
ulation genetics in circuit theory [37]. Pandir and Tandoğan, applied the modified
trial equation method to obtain analytical solutions of the time-fractional Fitzhugh-
Nagumo equation [34]. Khan et al. employed the homotopy perturbation method
(HPM) to obtain approximate analytical solutions of the time-fractional reaction-
diffusion equation of the Fisher type [22]. Merdan is using He’s variational itera-
tion method, obtain the analytical solutions of nonlinear time-fractional reaction-
diffusion equations of the Fisher type [31]. For α = 1, Eq. (5.1) reduces to the
classical nonlinear Fitzhugh-Nagumo equation. By using some methods, many re-
searchers have tried to obtain the exact solutions of this equation. For example; by
using Hirota method, Kawahara and Tanaka [23] have found new exact solutions
of Eq. (5.1); by using the first integral method, Li and Guo [27] have obtained a
series of new exact solutions of the Fitzhugh–Nagumo equation. When ψ = −1, the
Fitzhugh-Nagumo equation reduces to the real Newell-Whitehead equation.

For our goal, we present the following transformation

u(x, t) = U(ξ), ξ = cx− mtα

Γ(1 + α)
, (5.2)

where c and m are non zero constants.
Then by use of Eq. (5.2) with (2.3) and (1.2), Eq. (5.1) can be turned into an

ODE

mU ′ + c2U ′′ + U(1− U)(U − ψ) = 0, (5.3)

where U ′ =
dU

dξ
.
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Using the ansatz (5.3), for the linear term of highest order U ′′ with the highest
order nonlinear term U3. By simple calculation, we have balancing U ′′ with U3 in
(5.3) gives

n+ 2 = 3n, (5.4)

so that

n = 1. (5.5)

Suppose that the solutions of (5.3) can be expressed by a polynomial in
(
G′

G

)
as follows:

U(ξ) = a0 + a1

(
G′

G

)
, a1 ̸= 0. (5.6)

By using Eq. (2.6), from Eq. (5.6) we have

U ′(ξ) = −a1
(
G′

G

)2

− a1λ

(
G′

G

)
− a1µ, (5.7)

U ′′(ξ) = 2a1

(
G′

G

)3

+ 3a1λ

(
G′

G

)2

+ (2a1µ+ a1λ
2)

(
G′

G

)
+ a1λµ, (5.8)

and

U3(ξ) = a31

(
G′

G

)3

+ 3a0a
2
1

(
G′

G

)2

+ 3a20a1

(
G′

G

)
+ a30. (5.9)

Substituting Eq. (5.6)-(5.9) into Eq. (5.3), collecting the coefficients of
(
G′

G

)i
(i = 0, ..., 3) and set it to zero we obtain the system

−ma1µ+ c2a1λµ+ a20 − a0ψ − a30 + a20ψ = 0,

−ma1λ+ c2a1λ
2 + 2c2a1µ+ 2a0a1 − 3a20a1 + 2a0a1ψ − a1ψ = 0,

−ma1 + 3c2a1λ− 3a0a
2
1 + a21 + a21ψ = 0,

2c2a1 − a31 = 0.

(5.10)

Solving this system by sybolic computation gives

a0 =
4µ−λ2±

√
λ4−4λ2µ

2(4µ−λ2) , a1 =
∓3λ2+(1−2ψ)

√
λ4−4λ2µ

λ
(
∓4µ∓λ2±2λ2ψ∓8µψ+3

√
λ4−4λ2µ

) ,
c = ±

√
1

2λ2−8µ , m = ±
√
λ4−4λ2µ(2ψ−1)

2λ(4µ−λ2) ,

(5.11)

where λ and µ are arbitrary constants.
By using Eq. (5.11), expression (5.7) can be written as

U(ξ) =
4µ−λ2±

√
λ4−4λ2µ

2(4µ−λ2) +
∓3λ2+(1−2ψ)

√
λ4−4λ2µ

λ
(
∓4µ∓λ2±2λ2ψ∓8µψ+3

√
λ4−4λ2µ

) (G′

G

)
. (5.12)

Substituting general solutions of Eq. (2.6) into Eqs. (3.13) we have two types
of exact solutions of the time fractional Fitzhugh-Nagumo equation as follows:
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When λ2 − 4µ > 0,

U1,2(ξ) =
4µ−λ2±

√
λ4−4λ2µ

2(4µ−λ2) +
∓3λ2+(1−2ψ)

√
λ4−4λ2µ

λ
(
∓4µ∓λ2±2λ2ψ∓8µψ+3

√
λ4−4λ2µ

)×(
1
2

√
λ2 − 4µ

C1 cosh
1
2

√
λ2−4µξ+C2 sinh

1
2

√
λ2−4µξ

C1 sinh
1
2

√
λ2−4µξ+C2 cosh

1
2

√
λ2−4µξ

− λ
2

)
,

(5.13)

where ξ = ±
√

1
2λ2−8µx− ±

√
λ4−4λ2µ(2ψ−1)tα

2λ(4µ−λ2)Γ(1+α) and C1, C2 are arbitrary constants.

When λ2 − 4µ < 0,

U3,4(ξ) =
4µ−λ2±

√
λ4−4λ2µ

2(4µ−λ2) +
∓3λ2+(1−2ψ)

√
λ4−4λ2µ

λ
(
∓4µ∓λ2±2λ2ψ∓8µψ+3

√
λ4−4λ2µ

)×(
1
2

√
4µ− λ2

−C1 sin
1
2

√
4µ−λ2ξ+C2 cos

1
2

√
4µ−λ2ξ

C1 cos
1
2

√
4µ−λ2ξ+C2 sin

1
2

√
4µ−λ2ξ

− λ
2

)
,

(5.14)

where ξ = ±
√

1
2λ2−8µx− ±

√
λ4−4λ2µ(2ψ−1)tα

2λ(4µ−λ2)Γ(1+α) and C1, C2 are arbitrary constants.

In particular, if C1 ̸= 0, C2 = 0, λ > 0, µ = 0, then U1,2 becomes

u1,2(x, t) =
−λ2±λ2

2(−λ2) + ∓3λ2+(1−2ψ)λ2

2(∓λ2±2λ2ψ+3λ2)

(
coth

λ

2

(
±
√

1
2λ2x− ±λ2(2ψ−1)tα

2λ(−λ2)Γ(1+α)

)
− 1

)
,

(5.15)
and U3,4 becomes

u3,4(x, t) =
−λ2±λ2

2(−λ2) + i ∓3λ2+(1−2ψ)λ2

2(∓λ2±2λ2ψ+3λ2)

(
tan

λ

2

(
±
√

1
2λ2x− ±λ2(2ψ−1)tα

2λ(−λ2)Γ(1+α)

)
+ i

)
.

(5.16)
which are the solitary wave solutions of the time fractional Fitzhugh-Nagumo equa-
tion.

Remark 5.1. Comparing our results to the Pandir’s results [34] it can be seen that
these results are new.

6. Conclusion

In this work, (G′/G)-expansion method is extended to solve the time-fractional
fmKdV, Sharma-Tasso-Olver, Fitzhugh-Nagumo equations. As a result, some exac-
t solutions are obtained including the hyperbolic function solutions, trigonometric
function solutions and rational solutions. The work emphasized our belief that the
method is a reliable technique to handle nonlinear fractional differential equations
and fractional complex transform with help of (G′/G)-expansion method offer sig-
nificant advantages in terms of its straightforward applicability, its computational
effectiveness and its powerful. This method has more advantages: it is direct and
concise. Therefore, we deduce that the proposed method can be extended to solve
many systems of nonlinear fractional differential equations. This is our task in the
future.
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