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GENERAL SOLUTION OF BASSET EQUATION
WITH CAPUTO GENERALIZED HUKUHARA
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Abstract In this paper, the fuzzy Basset equation is introduced. This prob-
lem is related to the motion of a sphere in a viscous liquid when its parameters
are fuzzy numbers. We investigate the existence and uniqueness of solution
with converting the problem to a system of fuzzy fractional differential equa-
tion, and the solution is also obtained under Caputo generalized Hukuhara
differentiability. Some examples show the effectiveness and efficiency our ap-
proach.
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1. Introduction

The dynamics of a sphere immersed in an incompressible viscous fluid have attract-
ed lots of attention in mathematical mechanic researches. Basset in [10] proposed
the solution for a sphere moving in a viscous liquid when the sphere is moving in
a straight line under the action of a constant force, such as gravity, and also when
the sphere is surrounded by viscous liquid and is set in rotation about a fixed di-
ameter and then left to itself. Nowadays this problem is called the Basset equation
which can be modeled as fractional differential equation of order α ∈ (0, 1) is most
frequent, but not exclusively, used with α = 1/2. The advantage of the fraction-
al order models in comparison with integer-order models is based on its physical
considerations. Also, the fuzzy set theory is a powerful tool for modeling uncertain
problems. These vagueness in fractional order models may be appearing in each
part of the problem like initial condition, boundary condition or etc. Therefore,
solving fractional order problem in the sense of real conditions leads to use interval
or fuzzy calculations. Recently, the basic concept as a Riemann-Liouville fraction-
al integral, RiemannLiouville H-differentiability, Caputo type fractional derivative
based on Hukuhara and generalized Hukuhara difference and strongly generalized
differentiability are defined in fuzzy fractional calculus (see e.g. [2–5,7,9,15,16,19]).
The Caputo generalized Hukuhara differentiability are considered here. The Ca-
puto generalized Hukuhara derivative is presented in [5], the authors introduced an
ordinary fractional differential equation under the generalized Hukuhara differen-
tiability, and studied the existence and uniqueness of the solution to this equation.
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Moreover, the existence, and uniqueness of solutions of nonlinear differential equa-
tions of fractional order are discussed in [7] by contraction mapping principle and
the fixed point theorem. See also [4] for the examination of integro-differential
equations involving fractional Caputo generalized Hukuhara differentiability.

The aims of present paper briefly are 1. Introducing the Basset equation under
Caputo generalized Hukuhara differentiability. 2. Converting the fuzzy Basset e-
quation to a system of fuzzy ordinary fractional differential equation. 3. Obtaining
the solution of the Basset equation in two sense of generalized Hukuhara differen-
tiability.

In Section 2,we recall some basic concepts and results and then, we study some
essential properties for fuzzy Riemann-Liouville integral and Caputo generalized
Hukuhara derivative in Section 3. In Section 4, the fuzzy Basset equation is intro-
duced, its existence and uniqueness results studied and the solutions obtained in
two sense of Caputo generalized Hukuhara differentiability. Section 5 illustrates the
efficiency of our approach through solving two examples, and finally, conclusions
are discussed in Section 6.

2. Preliminaries

For the topics in this section, readers are referred to previous studies, for example,
to [1, 2, 8, 9, 11, 12]. Denote RF the space of fuzzy set in R, that is, functions
u : R −→ [0, 1] such that

(i) u is normal, i.e. ∃t0 ∈ R with u(t0) = 1,

(ii) u is a convex fuzzy set i.e. u((1−λ)t1+λt2) ≥ min{u(t1), u(t2)}, ∀t1, t2 ∈ R,
λ ∈ [0, 1],

(iii) u is upper semi-continuous on R,
(iv) cl{t ∈ R : u(t) > 0} is compact, where cl denotes the closure of a subset.

Then RF is called the space of fuzzy numbers. It is clear that R ⊂ RF . Given

0 < r ≤ 1, we denote [u]r =

{
t ∈ R

∣∣∣u(t) ≥ r

}
and [u]0 = cl

{
t ∈ R

∣∣∣u(t) > 0

}
.

The properties (i)-(iv) concludes that the r-level sets of u ∈ RF , [u]
r = [u−

r , u
+
r ],

are nonempty compact intervals ∀r ∈ [0, 1], ∀u ∈ RF .
A triangular fuzzy number is defined as a fuzzy set in RF , that is specified by

an ordered triple ũ = (a, b, c) ∈ R3 with a ≤ b ≤ c such that u−
r = a+ (b− a)r and

u+
r = c− (c− b)r are the endpoints of r-level sets ∀r ∈ [0, 1].
The metric D on fuzzy numbers given by D : RF × RF −→ R+ ∪ {0}

D(u, v) = sup
0≤r≤1

max{|u−
r − v−r |, |u+

r − v+r |}.

It is well known that (RF , D) is a complete metric space.

Definition 2.1 ( [11]). Let u, v ∈ RF . If there exists w ∈ RF such that u = v+w,
then w is called the Hukuhara difference of u and v, and it is denoted by u⊖ v.

Definition 2.2 ( [12]). The generalized Hukuhara difference of two fuzzy number
u, v ∈ RF is defined as follows

u⊖gH v = w ⇐⇒
{

(i) u = v + w,
or (ii) v = u + (-1) w.
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Definition 2.3 ( [12]). The generalized Hukuhara derivative of a fuzzy-valued func-
tion f : (a, b) −→ RF at t0 is defined as

f
′

gH(t0) = lim
h→0

1

h
[f(t0 + h)⊖gH f(t0)].

If f
′

gH(t0) ∈ RF , we say that f is generalized Hukuhara differentiable (gH-differentiable
for short) at t0.
Also we say that f is [(i)− gH]−differentiable at t0 if

[f
′

gH(t0)]
r = [(f−

r )
′
(t0), (f

+
r )

′
(t0)], 0 ≤ r ≤ 1, (2.1)

and that f is [(ii)− gH]−differentiable at t0 if

[f
′

gH(t0)]
r = [(f+

r )
′
(t0), (f

−
r )

′
(t0)], 0 ≤ r ≤ 1. (2.2)

Definition 2.4 ( [5]). Let f : (a, b) → RF . We say that f(t) is m-th order
gH-differentiable at t0 whenever the function f(t) is gH-differentiable of the order

i, i = 0, 1, ...,m− 1 at t0, and if there exist f
(m)
gH (t0) ∈ RF such that

f
(m)
gH (t0) = lim

h→0

1

h
[f

(m−1)
gH (t0 + h)⊖gH f

(m−1)
gH (t0)].

Definition 2.5 ( [14]). A fuzzy-valued function f : [a, b] → RF is said to be
absolutely continuous if, for each ϵ > 0, there exists δ > 0 such that, for each family
{(sk, tk)|k = 1, 2, ..., n} of disjoint open intervals in [a, b] with

∑n
k=1(tk − sk) < δ,

we have
∑n

k=1 D(f(tk), f(sk)) < ϵ.
Let Am

F [a, b] denote the space of fuzzy-valued functions from [a, b] into RF with
m− 1 gH-derivative absolutely continuous function on [a, b].

Definition 2.6 ( [6]). A fuzzy-valued function f : [a, b] → RF is said to be

continuous at t0 ∈ [a, b] if for each ϵ > 0 there is δ > 0 such that D
(
f(t), f(t0)

)
< ϵ,

whenever t ∈ [a, b] and |t− t0| < δ. We say that f is fuzzy continuous on [a, b] if f
is continuous at each t0 ∈ [a, b] such that the continuity is one-sided at endpoints
a, b.

The notation Cm
F [a, b] is the space of fuzzy-valued functions that, together with

their gH-derivatives of order less than or equal to m, are continuous on [a, b].

Definition 2.7 ( [6]). A function f : [a, b] → RF is called Riemann integrable on
[a, b], if there exists I ∈ RF , with the property: ∀ϵ > 0, ∃δ > 0, such that for any
division of [a, b], a = t0 < · · · < tn = b where |ti − ti−1| < δ for i = 1, 2, · · · , n and
for any points ξi ∈ [ti−1, ti], 1 ≤ i ≤ n, we have

D
( n∑
i=1

f(ξi)(ti − ti−1), I
)
< ϵ.

Then we denote I =
∫ b

a
f(t)dt and it is called fuzzy Riemann integral. Note that if

f be continuous in the metric D, Lebesgue integral and Riemann integral yield the
same value, and also[ ∫ b

a

f(t)dt

]r
=

[ ∫ b

a

f−
r (t)dt,

∫ b

a

f+
r (t)dt

]
, 0 ≤ r ≤ 1.

Let LF[a, b] denote the set of Lebesgue integrable fuzzy-valued functions on [a, b].
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3. Caputo generalized hukuhara derivative

In this section, we introduce some properties of fuzzy Riemann-Liouville integrals
and Caputo derivative under generalized Hukuhara differentiability.

Definition 3.1 ( [18]). Consider f : [a, b] → R, fractional derivative of f(t) in the
Caputo sense is defined as

(Dα
∗ f)(t) =

1

Γ(m− α)

∫ t

a

(t−s)(m−α−1)f (m)(s)ds m−1 < α ≤ m , m ∈ N , t > a.

(3.1)

Definition 3.2 ( [14]). Let f ∈ LF[a, b]. The Riemann-Liouville integral of fuzzy-
valued function f is defined as

(Jα
a f)(t) =

1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, a < s < t, 0 < α ≤ 1. (3.2)

For α = 1, we have J1
a = I.

Definition 3.3. Let f ∈ Am
F [a, b]. The Caputo generalized Hukuhara differentia-

bility of fuzzy-valued function f( cf [gH]−differentiability for short) is defined as
following:

( gHDα
∗ f)(t) = Jm−α

a f
(m)
gH (t) =

1

Γ(m− α)

∫ t

a

(t− s)(m−α−1)f
(m)
gH (s)ds, (3.3)

wherem−1 < α ≤ m, m ∈ N, t > a. Also we say that f is cf [(i)−gH]-differentiable
of order α if

[gHDα
∗ f(t)]

r = [(Dα
∗ f

−
r )(t), (Dα

∗ f
+
r )(t)], 0 ≤ r ≤ 1 (3.4)

and f is cf [(ii)− gH]-differentiable of order α if

[gHDα
∗ f(t)]

r = [(Dα
∗ f

+
r )(t), (Dα

∗ f
−
r )(t)], 0 ≤ r ≤ 1 (3.5)

where Dα
∗ f is defined in Definition 3.1.

Lemma 3.1. Let m − 1 < α ≤ m,m ∈ N, and the fuzzy valued-function f ∈
Cm

F [0, T ]. Then gHDα
∗ f ∈ CF[0, T ] and gHDα

∗ f(0) = 0.

Proof. It is immediate by Definition 3.3.

Lemma 3.2 ( [9]). Let α, β > 0 and f : [0, T ] → RF be a fuzzy-valued function
such that f ∈ LF[0, T ], then

Jα
0 J

β
0 f = Jα+β

0 f.

Lemma 3.3 ( [4]). Let 0 < α ≤ 1 and f : [0, T ] → RF be a fuzzy-valued function
such that f ∈ A1

F[0, T ], then

Jα
0 (gHDα

∗ f)(t) = f(t)⊖gH f(0).

Lemma 3.4. Let 0 < α ≤ 1 and f : [0, T ] → RF be a fuzzy-valued function such
that f ∈ CF[0, T ], then

gHDα
∗ J

α
0 f = f.
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Proof. Using properties of gHDα
∗ , Lemma 3.2 and Theorem 10 in [11], we have

gHDα
∗ (J

α
0 f)(t) = J1−α

0

(
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds

)′

gH

= J1−α
0

(
α− 1

Γ(α)

∫ t

0

(t− s)α−2f(s)ds

)
= J1−α

0 (Jα−1
0 f)(t) = f(t).

Lemma 3.5. Let f ∈ Cm
F [0, T ], and let 0 < α ≤ 1, β > 0 be such that k − 1 ≤

α+ β ≤ k where k ∈ N, k ≤ m− 1. Then

gHDα
∗ gHDβ

∗ f = gHDα+β
∗ f.

Proof. To prove this statement, we consider three cases:

1. [β] = α+ β: Using Definition 3.3, Lemmas 3.1, 3.3 and 3.4, find that

gHDα
∗ gHDβ

∗ f = gHDα
∗ J

[β]+1−β
a gHD[β]+1f = gHDα

∗ J
α+1
a gHD[β]+1f

= gHDα
∗ J

α+1
a gHDα+β+1f = gHDα+β

∗ f,

2. β ∈ N: In this case, by Definition 3.3, we have

gHDα
∗ gHDβ

∗ f = J1−α
0 gHD1+βf = gHDα+β

∗ f,

3. [β] = [α+ β]: Here we have, using Definition 3.3 and Lemma 3.2

gHDα
∗ gHDβ

∗ f = gHDα
∗ J

[β]+1−β
a gHD[β]+1f = J1−α

0 J [β]−β
a gHD[β]+1f

= J
1+[α+β]−(α+β)
0 gHD[α+β]+1f = gHDα+β

∗ f.

Lemma 3.6 ( [5]). Let 0 < α ≤ 1, the fuzzy initial value problem ( gHDα
∗ y)(t) =

f(t, y(t)), y(0) = y0 ∈ RF where f is supposed be continuous fuzzy function on
[0, T ], is equivalent to one of the following integral equations:

y(t) = y(0) +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds,

if y(t) be cf [(i)− gH]-differentiable, and

y(t) = y(0)⊖ (−1)

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds,

if y(t) be cf [(ii)− gH]-differentiable.

Theorem 3.1 ( [5]). Let 0 < α ≤ 1 and λ ∈ R. Then the solution of initial value
problem gHDα

∗ y(t) = λy(t) + f(t), y(0) = y0 ∈ RF where f ∈ CF[0, T ] is a given
function, can be expressed in the form

y(t) = y0Eα(λt
α) + ŷ(t),

if λ > 0 and y(t) be cf [(i)− gH]−differentiable and

y(t) = y0Eα(λt
α)⊖ (−1)ŷ(t),
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if λ < 0 and y(t) be cf [(ii)− gH]−differentiable, where

ŷ(t) =
1

λ

∫ t

0

d

ds
Eα(λs

α)f(t− s)ds,

and Eα(t) =
∑∞

j=0
tj

Γ(1+αj) , α > 0, is Mittag-Leffler function which the series con-

verges for all values of t.

4. Fractional dynamic model and the solution

Let us consider the fuzzy Basset equation in form{
y′gH(t) = f(t) + C1y(t) + C2 gHD

1
2
∗ y(t), t ∈ [0, T ],

y(0) = A ∈ RF ,
(4.1)

where C1, C2 are real constant, and y(t) is an unknown fuzzy function of crisp
variable t, f : [0, T ] → RF is continuous function.

Now, we convert Eq. (4.1) to a system of fuzzy fractional differential equa-
tion, and then use the presented method in [5] for finding solutions under Caputo
generalized Hukuhara differentiability concepts. To this, substitute

y(t) = y0(t), and gHD
1
2
∗ y(t) = y1(t).

Then by using Lemmas 3.1 and 3.5, we have

gHD
1
2
∗ y0(t) = y1(t), (4.2)

gHD
1
2
∗ y1(t) =gH D

1
2
∗ (gHD

1
2
∗ y0(t)) = (y0)

′
gH(t) = f(t) + C1y0(t) + C2y1(t),

with the initial conditions

y0(0) = A, y1(0) = 0.

Now, we can write system (4.2) in matrix form as

gHD
1
2Y (t) = F (t) + λY (t), (4.3)

where

Y (t) =

(
y0(t)
y1(t)

)
, λ =

(
0 1
C1 C2

)
, F (t) =

(
0

f(t)

)
.

For solving system (4.3), Theorem 3.1 can be adopt such that here the parameter
λ is a matrix. Hence the cf [(i)− gH]-differentiable solution of system (4.3) is

Y (t) = Y (0)E 1
2
(λt

1
2 ) + λ−1

∫ t

0

q(s)F (t− s)ds. (4.4)

And the cf [(ii)− gH]-differentiable solution of system (4.3) is

Y (t) = Y (0)E 1
2
(λt

1
2 )⊖ (−1)λ−1

∫ t

0

q(s)F (t− s)ds, (4.5)
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where

q(t) =
d

dt
E 1

2
(λt

1
2 ) =

d

dt

∞∑
j=0

(λt
1
2 )j

Γ(1 + j
2 )

is convergent series (see [13]).

Theorem 4.1. Assume that y is a continuous function in [0, T ]. Then y is a

solution of Eq.(4.1) if and only if the vector function Y = (y0, y1)
t = (y, gHD

1
2
∗ y)

t

solves the system (4.2).

Proof. First suppose that Y = (y0, y1)
t is a solution of system (4.2), then we

prove that y := y0 solves the Eq.(4.1). By Lemma 3.5, we have

gHD
1
2
∗ y(t) = gHD

1
2
∗ y0(t) = y1(t), (4.6)

y′gH(t) = gHD
1
2
∗ gHD

1
2
∗ y(t) =gH D

1
2
∗ y1 = f(t) + C1y0(t) + C2y1(t),

and it is clear that y0(0) = y(0). Thus the function y satisfies the Basset equation
(4.1).

Reciprocally, let us consider the fuzzy-valued function y ∈ CF[0, T ] satisfies in

Eq.(4.1), then y satisfies in system (4.6). Hence, Y = (y, gHD
1
2
∗ y)

t satisfies in
system (4.2) and initial condition y0(0) = A and also lemma 3.1 from continuity of

y concludes that y1(0) = gHD
1
2
∗ y(0) = 0.

Since instead governing equation, we consider equivalent fractional system, here
investigates the existence and uniqueness of solutions for the system of fuzzy frac-
tional differential equations involving the Caputo generalized Hukuhara derivative
with initial conditions.

Theorem 4.2. Let 0 < αj ≤ 1 for j = 1, 2, · · · , k and consider the following fuzzy
fractional differential system{

gHD
αj
∗ yj(t) = fj(t, y1(t), · · · , yk(t)),

yj(0) = y
(j)
0 , j = 1, 2, · · · , k,

(4.7)

where fj : [0, T ] × Rk
F , j = 1, 2, · · · , k, are continuous and satisfy Lipschitz condi-

tions, i.e.

D(fj(t, y1(t), · · · , yk(t)), fj(t, z1(t), · · · , zk(t))) ≤ Lj

k∑
i=1

D(yi, zi), j = 1, 2, · · · , k,

where Lj, j = 1, 2, · · · , k are real positive functions. Then the system of equation
(4.7) has a unique continuous solution.

Proof. Let yj for j = 1, 2, · · · , k are cf [(i)− gH]-differentiable of order αj . Using
Lemma 3.6, the system (4.7) can be written as following integral equations

yj(t) = yj(0)+
1

Γ(αj)

∫ t

0

(t−s)αj−1fj(s, y1(s), · · · , yk(s))ds, j = 1, 2, · · · , k. (4.8)

Then we have

yj(t) = yj(0) +
1

Γ(α)

∫ t

0

(t− s)α−1f̂j(s, y1(s), · · · , yk(s))ds, j = 1, 2, · · · , k, (4.9)
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where α = minj αj , and f̂j(s, y1(s), · · · , yk(s)) = Γ(α)
Γ(αj)

(t−s)αj−αfj(s, y1(s), · · · , yk(s)).

By setting Y = (y1, y2, · · · , yN )t, and F̂ = (f̂1, f̂2, · · · , f̂N )t, the system (4.9)
becomes

Y (t) = Y (0) +
1

Γ(α)

∫ t

0

(t− s)α−1F̂ (s, Y (s))ds. (4.10)

By Lipschitz continuity of fj for j = 1, 2, · · · , k we have f̂j for j = 1, 2, · · · , k are
continuous and satisfies in Lipschitz condition with respect to yj , j = 1, 2, · · · , k.
Consequently F̂ is continuous and satisfies in a Lipschitz condition with respect to
Y . Hence, from Theorem 3. 1 in [17], we conclude the existence and uniqueness of
cf [(i)− gH]-differentiable solution Y = (y1, y2, · · · , yN )t.
Next let us consider the solutions of system (4.7), yj for j = 1, 2, · · · , k are cf [(ii)−
gH]-differentiable. By Lemma 3.6, the system (4.7) can be converted to

yj(t) = yj(0)⊖
−1

Γ(αj)

∫ t

0

(t− s)αj−1fj(s, y(s))ds, j = 1, 2, · · · , k. (4.11)

Similarly, we write the system (4.11) as following integral equation

Y (t) = Y (0)⊖ −1

Γ(α)

∫ t

0

(t− s)α−1F̂ (s, Y (s))ds. (4.12)

The proof of Theorem 3. 1 in [17] can be easily extended for existence and unique-
ness of cf [(ii)− gH]-differentiable solution of Eq. (4.12) as well.

5. Examples

In this section, we solve two examples of Fuzzy Basset equation under Caputo
generalized Hukuhara differentiability.

Example 5.1. Consider the following Basset equation

y′gH(t) = 2y(t) + gHD
1
2
∗ y(t)⊖ f(t), t ∈ [0, 2], (5.1)

where f(t) = (0, 1, 2)⊙ (2t+2
√

t
π +1) and initial condition is y(0) = (0, 1, 2). The

Basset equation (5.1) is equivalent to following system

gHD
1
2
∗ y0(t) = y1(t),

gHD
1
2
∗ y1(t) = 2y0(t) + y1(t)⊖ f(t). (5.2)

The system (5.2) can be written as

gHD
1
2
∗ Y (t) = λY (t)⊖ F (t),

where

λ =

(
0 1
2 1

)
, λ−1 =

(
− 1

2
1
2

1 0

)
, F (t) =

(
0

f(t)

)
.
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By Eq.(4.4) the cf [(i)− gH]-differentiable solution is equal

Y (t) =

(
y0(t)
y1(t)

)
= E 1

2
(λt

1
2 )

(
(0, 1, 2)

0

)
⊖ λ−1

∫ t

0

d

ds
(E 1

2
(λs

1
2 ))

(
0

f(t− s)

)
ds

=E 1
2
(λt

1
2 )

(
(0, 1, 2)

0

)
⊖
∫ t

0

d

ds
(E 1

2
(λs

1
2 ))

(
1
2f(t− s)

0

)
ds.

Hence, the cf [(i)− gH]-differentiable solution of Eq. (5.1) is the first component of
Y (t), y0(t), that is

y(t) = (0, 1, 2)e11(t)⊖
1

2

∫ t

0

q11(s)f(t− s)ds,

where e11(t) and q11(t) are the top left component of the matrix E 1
2
(λt

1
2 ) and

d
dt (E 1

2
(λt

1
2 )), respectively. Then, we obtain

y(t) = (0, 1, 2)⊙ (t+ 1)

with r-level set [y(t)]r = [y−r , y
+
r ] = [r(t+1), (2− r)(t+1)] that is plotted in Figure

1.

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

6

Figure 1. The level sets of the solution of Example 5.1

Example 5.2. Consider the following Basset equation{
y′gH(t) = −y(t) +gH D

1
2
∗ y(t)⊖ (−6,−4,−2)⊙ (

√
t
π e

−t
1F1(0.5, 1.5; t)), t ∈ [0, 4],

y(0) = 2̃,
(5.3)

where 2̃ = (1, 2, 3) is a triangular fuzzy number and pFq(a, b; t) is the generalized
hypergeometric function. The Basset equation (5.3) is equivalent to following sys-
tem

gHD
1
2
∗ y0(t) =y1(t),

gHD
1
2
∗ y1(t) =− y0(t) + y1(t)⊖ (−6,−4,−2)⊙ (

√
t

π
e−t

1F1(0.5, 1.5; t)).

i.e.

gHD
1
2
∗ Y (t) = λY (t)⊖ F (t),
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where

λ =

(
0 1
−1 1

)
, λ−1 =

(
1 −1
1 0

)
,

F (t) =

(
0

(−6,−4,−2)⊙ (
√

t
π e

−t
1F1(0.5, 1.5; t))

)
.

According Eq.(4.4) the cf [(ii)− gH]-differentiable solution is

Y (t) =E 1
2
(λt

1
2 )

(
2̃
0

)
⊕
∫ t

0

d

ds
(E 1

2
(λs

1
2 ))λ−1

( 0

(−6,−4,−2)⊙ (
√

t−s
π es−t

1F1(0.5, 1.5; t− s))

)
ds

=E 1
2
(λt

1
2 )

(
2̃
0

)
⊕
∫ t

0

d

ds
(E 1

2
(λs

1
2 ))
( (2, 4, 6)⊙ (

√
t−s
π es−t

1F1(0.5, 1.5; t− s))

0

)
ds.

Hence, the cf [(ii)− gH]-differentiable solution of Basset Eq.(5.3) is

y(t) = 2̃e11 ⊕ (
2√
π
,

4√
π
,

6√
π
)⊙

∫ t

0

q11(
√
t− ses−t

1F1(0.5, 1.5; t− s))ds,

where e11(t) and q11(t) are the top left component of the matrix E 1
2
(λt

1
2 ) and

d
dt (E 1

2
(λt

1
2 )), respectively. So, we obtain closed form of exact solution, y(t) = 2̃e−t,

which is level-wise as [y(t)]r = [y−r , y
+
r ] = [(1 + r)e−t, (3 − r)e−t] and pictured in

Figure 2 .

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2. The level sets of the solution of Example 5.2

6. Conclusion

The Basset equation is introduced and studied under Caputo generalized Hukuhara
differentiability. We converted the problem to the equivalent system of fuzzy ordi-
nary differential equations of fractional order, for this, some properties of Caputo
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derivative are needed that proved with details. The solution is obtained in two
concepts of differentiability by using presented method in [5] with this difference
that we have used it in the matrix form.
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