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Abstract This paper describes a new problem-solving mentality of finding
optimal parameters in optimal homotopy analysis method (optimal HAM). We
use particle swarm optimization (PSO) to minimize the exact square residu-
al error in optimal HAM. All optimal convergence-control parameters can be
found concurrently. This method can deal with optimal HAM which has fi-
nite convergence-control parameters. Two nonlinear fractional-order differen-
tial equations are given to illustrate the proposed algorithm. The comparison
reveals that optimal HAM combined with PSO is effective and reliable. Mean-
while, we give a sufficient condition for convergence of the optimal HAM for
solving fractional-order equation, and try to put forward a new calculation
method for the residual error.
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1. Introduction

Homotopy analysis method (HAM) was first proposed by Liao [15, 16], employing
the concept of homotopy in topology to obtain an analytical approximate method
for solving nonlinear equation. The most common and widely used methods for de-
termining analytical approximate solutions of a nonlinear system are perturbation
methods. Most of the perturbation methods unfortunately, require the inclusion of
a small parameter in the equation. Unlike perturbation techniques, the HAM is not
limited to any small physical parameters in the considered equation [16]. Therefore,
the HAM can overcome the foregoing restrictions and limitations of perturbation
techniques as it provides us with a powerful tool to analyze strongly nonlinear prob-
lems [1,16,27]. With this method, the analytical approximate solution of a nonlinear
equation is expressed as an infinite series. Its convergence rate and convergence re-
gion is controlled by an auxiliary parameter ~, which is called convergence-control
parameter. The effective ~ is obtained by using a ~-curve [15]. However, when
the nonlinear problem contains multiple equations, there may exist two or more
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convergence-control parameters (~1, ~2, · · · , ~k). In this case, it is difficult to find
appropriate convergence-control parameters.

To deal with the problem of convergence-control parameters, some optimal ho-
motopy analysis (or asymptotic) approaches have been put forward by many schol-
ars recently. Where, the minimization of the residual error of the nonlinear equation
is a crucial step. Yabushita [32] draws the iso-lines of the residual error on the plane,
then minimize the residual error and get the optimal convergence-control param-
eters. When the number of convergence-control parameters are greater than two,
this approach is not appropriate. Marinca et al. [20–22] minimize the residual error
based on necessary (not sufficient) conditions for extremum existence. Thus, the
obtained parameters may not be optimal. In this approach, compute the partial
derivative of the residual error function with respect to each convergence-control
parameter, and the results are set equal to zero. However, this approach leads to
a system of coupled nonlinear algebraic equations with multiple variables which
becomes more and more difficult to solve if the number of the convergence-control
parameters increases [6]. Liao [17] introduce a new averaged residual error function,
which only contains at most three convergence-control parameters and is computa-
tionally rather efficient. When the number of convergence-control parameters is less
than three, these two methods are effective. Through practical examples, Liao [17]
and Marinca et al [20–22] propose that the residual error function with less than
three convergence-control parameters also can obtain good results. Of course, there
may exist cases where more convergence-control parameters are considered. Here,
how to get a set of optimal convergence-control parameters, a new method is need-
ed to deal with this situation. Niu and Wang [24] put forward a one-step method,
which calculate the optimal convergence-control parameters step by step. But, the
rationale of this method is not based on the necessary conditions for extremum
existence, nor the sufficient condition. The obtained results may not be optimal
convergence-control parameters.

In this paper, we use PSO to deal with minimization of the residual error and
get optimal convergence-control parameters. PSO is a population-based stochastic
approach for solving continuous and discrete optimization problems. When optimal
HAM is combined with PSO, it can effectively find the all convergence-control
parameters. Subsequently, we apply it to solve nonlinear fractional-order differential
equation (FDE) that exact solutions are difficult to achieve [30]. As far as we know,
this is the first attempt to deal with optimal convergence-control parameters using
optimization algorithm, and apply optimal HAM with PSO to solve FDE.

The structure of this paper is organized as follows. Section 2 is devoted to the
basic concepts of fractional-order integral and derivative. PSO and optimal HAM
are presented in Section 3. The convergence analysis is discussed in Section 4. We
apply optimal HAM and PSO to solve nonlinear FDE in Section 5. Another form
of residual error is proposed in Section 6. Conclusions are stated in the last Section.

2. Preliminaries

In this section, we introduce some definitions of fractional calculus and derivative,
which will be used later [4, 12].
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Definition 2.1. The Euler gamma function Γ(z) is defined by

Γ(z) =

∫ +∞

0

tz−1e−tdt (ℜ(z) > 0). (2.1)

This integral is convergent for all complex z ∈ C and Γ(z + 1) = zΓ(z).

Definition 2.2. A real function f(t), t > 0, is said to be in space Cα, α ∈ R if
there exists a real number p(> α), such that f(t) = tpf1(t) where f1(t) ∈ C[0,∞].

Definition 2.3. A real function f(t), t > 0, is said to be in space Cm
α ,m ∈ N

∪
{0}

iff f (m)(t) ∈ Cα.

Definition 2.4. The Riemann-Liouville integral operator of order β > 0 is defined
as

Jβz(t) =
1

Γ(β)

∫ t

0

(t− τ)β−1z(τ)dτ, (2.2)

where Γ(·) is the Euler gamma function.

Definition 2.5. The Caputo fractional derivative of y(t), y(t) ∈ Cm
−1,m ∈ N

∪
{0},

is defined as

Dα
∗ y(t) =

1

Γ(m− α)

∫ t

0

(t− τ)m−α−1y(m)(τ)dτ, α > 0, (2.3)

where m− 1 < α < m (m ∈ N), y(m)(t) is the ordinary mth derivative of y(t), J is
the Riemann-Liouville integral operator.

3. Combination of optimal HAM and PSO

3.1. Particle Swarm Optimization

PSO is an effective computation technique like genetic algorithms, simulated an-
nealing, etc [13, 14]. In PSO, candidate solutions of a specific optimization prob-
lem are called particles. Each particle in the searching space (n-dimension) is
characterized by two factors, i.e., position xi = (xi1, xi2, · · · , xin) and velocity
vi = (vi1, vi2, · · · , vin), where i denote the ith particle in the swarm. The fitness of
each particle can be evaluated according to the objective function of optimization
problem. PSO starts with the random initialization of a swarm of particles in the
search space. Let pbesti(k) is the best position found by particle i within k itera-
tion steps. gbest denotes the best position for all particles so far. Then all particles
update their velocities and positions based on their own experience pbesti(k) and
experience of all particles gbest. The updating rules of velocity and position are
given by (3.1) and (3.2) respectively.{

vk+1
i = w × vki + c1 × r1 × (pbesti(k)− xk

i ) + c2 × r2 × (gbest− xk
i ), (3.1)

xk+1
i = xk

i + vk+1
i , i = 1, 2, · · · , n, (3.2)

where n is the swarm size, vk+1
i and xk+1

i represent the velocity and position of
particle i at kth iteration step respectively; r1 and r2 are two independent random
numbers in the range of [0, 1]; c1 and c2 are acceleration constant, usually c1 = c2 =
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2.0; w is called the inertia weight factor, which take a random number. Generally,
the value of each component in vi can be limited to a range [vmin, vmax] to control
excessive roaming of particles outside the searching space. With the Eqs.(3.1) and
(3.2), all particles find their new positions and apply these new positions to update
their individual best positions and global best position of the swarm. This process is
repeated until a user-defined stopping criterion, usually maximum iteration number
tmax is reached. For more details, one can consult the references [13, 14,33,34].

3.2. Optimal Homotopy Analysis Method

Consider the following nonlinear differential equation

N [y(t)] = 0, t ∈ Ω, (3.3)

where N is a nonlinear differential operator and y(t) is an unknown function. t is
independent time variable. Liao [18] in 1999 introduced the following zeroth-order
deformation equation:

[1−B(q)]L[ϕ(t; q)− y0(t)] = c0A(q)N [ϕ(t; q)], (3.4)

where q ∈ [0, 1], A(q) and B(q) are the so-called deformation functions satisfying

A(0) = B(0) = 0, A(1) = B(1) = 1, (3.5)

whose Taylor series

A(q) =

+∞∑
k=1

µkq
k, B(q) =

+∞∑
k=1

σkq
k (3.6)

exist and are convergent for |q| ≤ 1 [15,16]. As given by Liao [16,17], there are one
special parameter deformation functions which are given as

A(q; c1) =

+∞∑
k=1

µk(c1)q
k, (3.7)

B(q; c2) =

+∞∑
k=1

σk(c2)q
k, (3.8)

where |c1| ≤ 1 and |c2| ≤ 1 are constants, called the convergence-control parameters.
In Liao [16,17], one can define µ1(c1) = 1−c1, σ1(c2) = 1−c2, µk(c1) = (1−c1)c

k−1
1

and σk(c2) = (1 − c2)c
k−1
2 , where k ≥ 2. Thus there only exist three convergence-

control parameters c0, c1, c2.
In the following, we assume B(q) = q and c0A(q) = q~(q), then construct the

zeroth-order deformation equation [6]

(1− q)L[ϕ(t; q)− y0(t)] = q~(q)N [ϕ(t; q)], (3.9)

where ~(q) is convergence-control(auxiliary) function with ~(1) ̸= 0. When q in-
creases from 0 to 1 continuously, ϕ(t; q) varies (or deforms) from the initial guess so-
lution y0(t) (i.e., ϕ(t; 0)) to the exact solution y(t) (i.e., ϕ(t; 1)) of Eq.(3.3). q ∈ [0, 1]
is an embedding parameter. L is an auxiliary linear operator. y0(t) is the solution
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of initial guess. The Eq.(3.9) is so-called zeroth-order deformation equation of opti-
mal HAM [9,16,24,28]. Now, expand ϕ(t; q) and ~(q) to the Maclaurin series with
respect to q as follows: 

ϕ(t; q) =
+∞∑
m=0

ym(t)qm,

~(q) =
+∞∑
k=0

hkq
k,

(3.10)

where ym(t) = 1
m!

∂mϕ(t;q)
∂qm

∣∣∣
q=0

, hk = 1
k!

∂k~(q)
∂qk

∣∣∣
q=0

. If the two series (3.10) are

convergence at q = 1, then the solution of the nonlinear Eq. (3.3) is

y(t) = y0(t) +
∞∑

m=1

ym(t). (3.11)

Similar to homotopy analysis method [15–18], we can construct the following high-
order deformation equation. Differentiating the Eq.(3.9) m(≥ 2)−times with re-
spect to the parameter q, dividing the resulting equation by m! and setting q = 0,
we get mth-order deformation equation

L [ym(t)− χmym−1(t)] =
m−1∑
k=0

hkRm−1−k(t), (3.12)

where

Ri(t) =
1

i!

∂iN (ϕ(t; q))

∂qi

∣∣∣∣
q=0

, i = 0, 1, 2, · · · ,m− 1, (3.13)

and

χm =

{
0, m ≤ 1,

1, m > 1.
(3.14)

Applying the inverse operator L−1 on both sides of the Eq.(3.12), we get the recur-
sive equation

ym(t) = χmym−1(t) + L−1

[
m−1∑
k=0

hkRm−1−k(t)

]
. (3.15)

Combine (3.11) with (3.15), we obtain mth-order approximate analytical solution
of the nonlinear Eq. (3.3).

ỹm(t) =

m∑
k=0

yk(t). (3.16)

The approximate analytical solution (3.16) only depends on control parameters
h0, h1, · · · , hm−1. Substituting the Eq.(3.16) into the Eq.(3.3), if N (ỹm(t)) = 0,
then ỹm(t) happens to be the exact solution of the Eq. (3.3). Generally such a case
will not arise for the nonlinear differential Eq. (3.3), but we define the exact square
residual error as [20–22]

Em =

∫
Ω

{
N

[
m∑

k=0

yk(t)

]}2

dΩ. (3.17)
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In theory, if Em → 0, then
+∞∑
k=0

yk(t) is the solution of the nonlinear Eq.(3.3). Usual-

ly, we only can make Em minimization by choosing optimal values of convergence-
control parameters h0, h1, · · · , hm−1, i.e.,

min
(h0,h1,··· ,hm−1)∈Rm

∫
Ω

{
N

[
m∑

k=0

yk(t)

]}2

dΩ. (3.18)

Em is nonlinear functions with variables h0, h1, · · · , hm−1, which corresponds to the
following set of m algebraic equations

∂Em

∂h0
= 0,

∂Em

∂h1
= 0,

...

∂Em

∂hm−1
= 0.

(3.19)

The optimal values of h0, h1, · · · , hm−1 are obtained. These optimal convergence-
control parameters can be substituted into the Eq.(3.16). Thus we get the m-
order approximate analytical solution of the Eq. (3.3) [20]. For higher-order ap-
proximation the Mathematica is difficult to use for the solution of the obtained
nonlinear algebraic Eq.(3.19). For more details on the optimal HAM see also the
references( [6, 16,17,20–22,24,28] and references cited therein).

Remark 3.1. Combining Liao’s HAM [16] and the exact square residual error
method [20–22,32], one can get an optimal HAM, which minimize the square resid-
ual error: at the mth-order approximation, including a set of nonlinear algebraic
equation and convergence-control parameters h0, h1, · · · , hm−1. The optimal solu-
tion (h0, h1, · · · , hm−1) of the Eqs.(3.19) is stationary point. It is necessary condi-
tion for extreme value problem (3.18), not sufficient condition. Thus, the solution
(h0, h1, · · · , hm−1) of the Eqs.(3.19) may be maximum, not be the minimum, also
may not be an extreme point. See the following example. Moreover, it is difficult
to find all roots of the nonlinear Eqs.(3.19) when the number of equations is large
(greater than or equal to three).

Example 3.1. Assume that Em = h3
0 + h3

1 − 9h0h1 + 27, then
∂Em

∂h0
= 3h2

0 − 9h1 = 0,

∂Em

∂h1
= 3h2

1 − 9h0 = 0.

(3.20)

Thus, we get two stationary points A1(0, 0) and A2(3, 3). But, it is easy to prove
that A1(0, 0) is not extreme point (minimum or maximum) and Em(0, 0) = 27.
However, A2(3, 3) is minimum and Em(3, 3) = 0.

Remark 3.2. Liao [16,17] developed an optimal HAM with only three convergence-
control parameters. There exist at most only three unknown convergence-control
parameters c0, c1 and c2 at any order of approximations, and adopt the averaged
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residual error. In essence, the present method ((3.9) − (3.19)) belongs to the
infinite-parameter optimal HAM and there exist an infinite number of unknown
convergence-control parameters (see Chapter 3 of [16]). In practice, we adopt the
mth-order homotopy-approximation which contains finite unknown convergence-
control parameters.

Since the Remark 3.1, here we propose the PSO method to deal with the optimal
problem (3.18) in the optimal HAM. Thus we can avoid solving algebraic Eqs.(3.19)
and get the optimal convergence-control parameters.

4. Convergence Analysis of HAM for FDE

Consider the general form of FDE{
Dα

∗ y(t) = f(t, y(t)), 0 < α ≤ 1,

y(0) = y0.
(4.1)

Rewrite (4.1) as Dα
∗ y(t)− f(t, y(t)) = 0, then the corresponding Eq.(3.3) becomes

N [y(t)] = Dα
∗ y(t)− f(t, y(t)) = 0. (4.2)

Thus we construct linear operator and its inverse operator are L = Dα
∗ and L−1 =

Jα respectively. In the following, we prove that if the series solution (3.11) is
convergent, it converges to the correct solution of the nonlinear Eq.(3.3).

Theorem 4.1. As long as the series solution (3.11) converges,

+∞∑
m=0

Rm(t) = 0. (4.3)

Proof. This proof is similar to Theorem 1 in [18] and Theorem 2 in [31]. Since

the series (3.11) y(t) = y0(t) +
∞∑

m=1
ym(t) converges, it can be written as S(t) =

+∞∑
m=0

ym(t) and by necessary condition for the convergence of the Series, it holds that

lim
m→+∞

ym(t) = 0. Summation of Eq.(3.12) from m = 1 to +∞ gives

+∞∑
m=1

Dα
∗ [ym(t)− χmym−1(t)] =

+∞∑
m=1

m−1∑
k=0

hkRm−1−k(t). (4.4)

The left-hand side can be rearranged to give

Dα
∗

{
+∞∑
m=1

[ym(t)− χmym−1(t)]

}
=

+∞∑
m=1

m−1∑
k=0

hkRm−1−k(t), (4.5)

which becomes

Dα
∗

{
lim

m→+∞
ym(t)

}
=

+∞∑
m=1

m−1∑
k=0

hkRm−1−k(t). (4.6)
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With Dα
∗ [0] = 0, we have

+∞∑
m=1

m−1∑
k=0

hkRm−1−k(t) = 0. (4.7)

Since the second series of (3.10) is convergence at q = 1, we denote ~(1) =
+∞∑
k=0

hk.

Rewrite (4.7) as

+∞∑
k=0

hkR0(t) +
+∞∑
k=0

hkR1(t) +
+∞∑
k=0

hkR2(t) + · · ·+
+∞∑
k=0

hkRn(t) + · · · = 0, (4.8)

i.e., ~(1)
+∞∑
m=0

Rm(t) = 0, With ~(1) ̸= 0, we get
+∞∑
m=0

Rm(t) = 0.

Theorem 4.2. If the series solution (3.11) converges, it must be a solution of the
nonlinear equation (3.3).

Proof. Let ε(t; q) = N [ϕ(t; q)] denote the residual error of Eq.(3.3). The residual
error at q = 1 can be expanded by a Taylor series at q = 0 to give

ε(t; q = 1) =
+∞∑
m=0

1

m!

∂mN [ϕ(t; q)]

∂qm

∣∣∣∣∣
q=0

=
+∞∑
m=0

Rm(t)

= 0.

(4.9)

Thus, as long as the series solution (3.11) converges, it is a solution of Eq.(3.3).

5. Approximate analytical solution of FDE

In general, there exists no method that yields an exact solution for nonlinear FDE, so
approximation and numerical techniques must be used [5]. For example, the HAM
[2, 8, 10], the homotopy perturbation method (HPM) [19, 26] and the variational
iteration method (VIM) [25,29] have been used to provide analytical approximation
to FDE. In this section, we employ optimal HAM and PSO to find out approximate
analytical solutions of FDE.

Test Problem 1:
Consider the fractional-order modified logistic equation [3]Dα

∗ y(t) = ry(t)(1− y(t)

k
)(y(t)− n), t ≥ 0,

y(0) = y0,
(5.1)

where 0 < α ≤ 1 and y0, r, n, k are all positive constants.
We define the nonlinear operator

N (y(t, q)) = Dα
∗ y(t, q) + nry(t, q)− (r +

nr

k
)y2(t, q) +

r

k
y3(t, q), (5.2)
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linear operator L = Dα
∗ and its corresponding inverse operator L−1 = Jα. Accord-

ing to (3.9)–(3.16), we have

ym(t) = χmym−1(t) + Jα

[
m−1∑
k=0

hkRm−1−k(t)

]
,

Rm−1−k(t) = Dα
∗ ym−1−k(t) + nrym−1−k(t)−

kr + nr

k

m−1−k∑
i=0

yi(t)ym−1−k−i(t)

+
r

k

m−1−k∑
i=0

ym−1−k−i(t)

i∑
j=0

yj(t)yi−j(t).

(5.3)
Beginning with y0(t) = y0, by the iteration formulation (5.3), we can obtain y1(t) =

h0A
Γ(1+α) t

α, y2(t) =
B

Γ(1+α) t
α+ C

Γ(1+2α) t
2α, y3(t) =

D
Γ(1+α) t

α+ E
Γ(1+2α) t

2α+ F
Γ(1+3α) t

3α,

y4(t) =
G

Γ(1+α) t
α + H

Γ(1+2α) t
2α + J

Γ(1+3α) t
3α + M

Γ(1+4α) t
4α, · · · , where

A = nry0−
(
r + nr

k

)
y20+

r
ky

3
0 , B = (h2

0+h0+h1)A, C =
[
nr − kr+nr

k/2 y0 +
3r
k y20

]
h2
0A,

D = (h0+1)B+(h0h1+h2)A, E = C(1+h1

h0
+h0+

CB
h0A

), F = C2

h0A
+
[
3y0

r
k − (r + nr

k )
]

h3
0A

2Γ(1+2α)
Γ2(1+α) , G = D+Dh0 +Bh1 +Ah0h2 +Ah3, H = E +Eh0 +Dnrh0 +Ch1 +

BCh1+C2h1

Ah2
0

+Anrh0h2 − 2Drh0y0 −2Arh0h2y0

−2Dnrh0y0+2Anrh0h2y0−3Drh0y
2
0−3Arh0h2y

2
0

k , J = F (1 + h0) + Enrh0 − 2Erh0y0 −
2ABrΓ(1+2α)h2

0+A2rΓ(1+2α)h2
0h1

Γ2(1+α) − 2ABnrΓ(1+2α)h2
0+A2nrΓ(1+2α)h2

0h1−6ABrΓ(1+2α)h2
0y0

kΓ2(1+α) +
3A2rh2

0h1y0

k
Γ2(1+α)
Γ(1+2α)

− 2Enrh0y0−3Erh0y
2
0

k , M = Fnrh0 − 2Frh0y0 − 2ACrΓ(1+3α)h2
0

Γ(1+α)Γ(1+2α) −

2ACnrΓ(1+3α)h2
0

kΓ(1+α)Γ(1+2α) +
6ACrΓ(1+3α)h2

0y0

kΓ(1+α)Γ(1+2α) − 2Fnrh0y0−3Frh0y
2
0

k +
A3rΓ(1+3α)h4

0

kΓ3(1+α) . Thus we get

the 4th-order approximate analytical solution of the Eq.(5.1) as following.

ỹm(t) = y0+
h0A+B +D +G

Γ(1 + α)
tα+

C + E +H

Γ(1 + 2α)
t2α+

F + J

Γ(1 + 3α)
t3α+

M

Γ(1 + 4α)
t4α.

(5.4)
With the exact square residual error (3.17), we obtain

F2 =

∫ t

t0

[
Dα

∗ ỹm(t) + nrỹm(t)−
(
r +

nr

k

)
ỹ2m(t) +

r

k
ỹ3m(t)

]2
dt, (5.5)

where Dα
∗ ỹm(t) = h0A+B +D+G+ C+E+H

Γ(1+α) t
α + F+J

Γ(1+2α) t
2α + M

Γ(1+3α) t
3α. Based

on (5.5), we get the following optimization problem

min
(h0,h1,h2,h3)∈R4

F2. (5.6)

Now, fix the parameters r = 0.5, n = 1, k = 10, α = 0.98, y0 = 0.8, t ∈ [0, 3], we use
PSO to deal with the optimization problem (5.6) and find the optimal convergence-
control parameters h0, h1, h2 and h3. The whole design steps can be summarized
as follows (Matlab software).

Step 1. Define global variables: swarm size, inertia weight factor, maximum
iteration number, etc.

Step 2. Construct initial subfunction (initial.m), it contains maximum number
of iterations, maximal velocity, c1, c2, swarm size n and swarm pop, and so on.
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pop =
h01 . . . h31 v01 . . . v31 pbesth01 . . . pbesth31 fbest1 fit1
h02 . . . h32 v02 . . . v32 pbesth02 . . . pbesth32 fbest2 fit2
...

...
...

...
...

...
...

...
h0n . . . h3n v0n . . . v3n pbesth0n . . . pbesth3n fbestn fitn


n×14

.

In the matrix pop, the first four columns pop(:, 1) ∼ pop(:, 4) storage positions of
particles h0 ∼ h3 respectively. Their initial values are random numbers which lie
in interval [−1, 1]; The columns pop(:, 5) ∼ pop(:, 8) represent velocity of particles
h0 ∼ h3; The columns pop(:, 9) ∼ pop(:, 12) respectively represent best positions
of particles h0 ∼ h3 in history; The pop(:, 13) represents the best fitness value of
every particles. The column pop(:, 14) is fitness value of the all current particles.
Then, at the kth-times iteration, global best fitness value of F2 is bestfitness(k) =
min(pop(:, 13)) = min fbesti, i = 1, 2 · · · , n.

Step 3. Construct a subfunction (adapting.m), including fitness function based
on the Eq.(5.5). Calculating fitness value of every particle, it is stored in pop(:, 14).
Comparison of pop(:, 14) and pop(:, 13), updating pop(:, 9) ∼ pop(:, 13), then we get
global best fitness value bestfitness(k) = min(pop(:, 13)) at kth-times iteration,
and obtain situation of min(pop(:, 13)), i.e., (i, 13). Then, the optimal convergence-
control parameters h0 = pop(i, 9), h1 = pop(i, 10), h2 = pop(i, 11), h3 = pop(i, 12) in
all k iterations. We save them in matrices trace, trace2, trace3, trace4, and save
bestfitness(k) in besthistory.

Step 4. Based on the Eqs. (3.1) and (3.2), construct updating function of
velocity and situation, i.e., updatepop.m.

Step 5. Repeat steps 1-4, until stop criterion (Maximum number of iterations)
is reached, get optimal convergence-control parameters: h0 = −0.85241709290217,
h1 = −0.31797308168261, h2 = −0.05745525388485, h3 = −0.04168853741609. At
this time, the optimal fitness value is min

(h0,h1,h2,h3)
F2 = 7.364986400000000 × 10−6,

ỹm(t) = 0.8− 0.7257098306× 10−1t
49
50 − 0.1141039014× 10−1t

49
25 + 0.2050324723×

10−3t
147
50 + 0.8869896610× 10−4t

98
25 .

When α = 1, r = 0.5, n = 1, k = 10, y0 = 0.8, the exact solution of Eq.(5.1) is

1

10
ln |y|+ 1

90
ln |y − 10| − 1

9
ln |y − 1|+ 1

20
t = c0, (5.7)

where c0 = 1
10 ln |y0|+

1
90 ln |y0 − 10| − 1

9 ln |y0 − 1|.
Enlarge bestfitness with 105, plot trace, trace2, trace3, trace4 (enlarge all of

them with 10) and besthistory, the results are as showing in Figure 1. Approximate
analytical solution of Optimal HAM using the 4-term, the numerical solution and
the exact solution have been plotted in Figure 2. The exact solution (5.7) is implicit
form. It has two branches (labeled with −−) as shown in Figure 2. The upper
branch does not satisfy the initial condition (y0 = 0.8). Thus we adopt the lower
branch. It is explicitly shown that an agreement between the derived solution,
numerical solution and exact solution is excellent. An almost complete overlap can
be observed.

Remark 5.1. In this method, we used the objective function value (minF2) to
measure the extent of optimal convergence-control parameters (h0 ∼ h3). If the
minF2 is approximately equal to zero, then the corresponding h0 ∼ h3 are better.
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Figure 1. Convergence process of h0-h3 and
fitness value F2
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If minF2 ≥ 0.1, then we can relax the initial range of h0 ∼ h3 and re-optimized
procedure is necessary in practice.

Test Problem 2:
Consider the following fractional-order Riccati differential equation [11]{

Dα
∗ y(t) = −y2(t) + 1, 0 < α ≤ 1,

y(0) = 0.
(5.8)

Note that the exact solution of (5.8) is y(t) = e2t−1
e2t+1 when α = 1.

Construct the nonlinear operator

N (y(t, q)) = Dα
∗ y(t, q) + y2(t, q)− 1, (5.9)

linear operator L = Dα
∗ and its corresponding inverse operator L−1 = Jα. Accord-

ing to (3.9)–(3.16) and beginning with y0(t) = y0, we get the 4th-order approximate
analytical solution of the Eq.(5.8).

ỹm(t) = y0+
h0A+B +D +G

Γ(1 + α)
tα+

C + E +H

Γ(1 + 2α)
t2α+

F + J

Γ(1 + 3α)
t3α+

M

Γ(1 + 4α)
t4α,

(5.10)
where A = y20 − 1, B = (h2

0+h0+h1)A,C = 2y0h
2
0A, D = B+h1h0A+h2A+h0B,

E = C + 2y0h1h0A + h0C + 2h0y0B, F = 2h0y0C + h3
0A

2Γ(1 + 2α)/Γ2(1 + α),
G = (1+ h0)D+ h1B + h2h0A+ h3A,H = (1+ h0)E − 2h0y0D+ h1C +2h1y0B +

2y0h2h0A, J = (1+h0)F − 2h0y0E− 2h2
0ABΓ(1+2α)
Γ2(1+α) +2h1y0C +

h1h
2
0A

2Γ(1+2α)
Γ2(1+α) ,M =

−2h0y0F − 2h2
0ACΓ(1+3α)

Γ(1+α)Γ(1+2α) . With the exact square residual error (3.17), we obtain

F2 =

∫ t

t0

[
Dα

∗ ỹm(t) + ỹ2m(t)− 1
]2

dt, (5.11)

where Dα
∗ ỹm(t) = h0A+B +D+G+ C+E+H

Γ(1+α) t
α + F+J

Γ(1+2α) t
2α + M

Γ(1+3α) t
3α. Based

on the Eq. (5.11), we get the following optimization problem

min
(h0,h1,h2,h3)∈R4

F2. (5.12)
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Now, fix the order α = 0.98 and t ∈ [0, 2], we use PSO algorithm to deal with
this optimization problem (5.12) and get optimal convergence-control parameters:
h0 = −0.79423340098725, h1 = 0.28262642620470 , h2 = −0.00217053743085, h3 =
−0.06866543558425. At this time, the optimal fitness value is min

(h0,h1,h2,h3)
F2 =

7.893640106000000× 10−4 and ỹm(t) = 0.9599487046× t
49
50 − 0.2029082450× t

147
50 .

Now, enlarge F2 with 102, plot h0, h1, h2, h3(enlarge all of them with 10), the re-
sults are as showing in Figure 3. Approximate analytical solution of Optimal HAM
using the 4-term, the numerical solution and the exact solution have been plotted
in Figure 4. It is explicitly shown that an agreement between the derived solution,
numerical solution and exact solution is excellent.

Remark 5.2. During the operation of each procedure, the value of h0 ∼ h3 may
be different, but minF2 is stable in the vicinity of 10−6 in Test Problem 1 and
10−4 in Test Problem 2 respectively. The smaller value of minF2 ensure that the
parameters h0 ∼ h3 are more efficient.

Remark 5.3. Theoretically, PSO can deal with the optimal problem minF2 with
finite parameters h0 ∼ hn. But the iteration process of optimal HAM is compli-
cated when n is large. Thus, the objective function F2 is complex and the process
of finding the optimal parameters may be time-consuming. The obtained results
(Figure 4) are consistent with the Example 4.1 in [11].

6. Another form of residual error

Firstly, we give the following mean value theorem for multiple integral.

Theorem 6.1 ( [7]). Let D is bounded closed region in Rn, m(∂D) = 0, f : D ⊂
Rn → R is continuous in D, g : D ⊂ Rn → R is Lebesgue integral in D, and g(P )
is non-negative almost everywhere in D, then there exists at least an interior point
P0 in D, such that ∫

D

f(P )g(P )dσ = f(P0)

∫
D

g(P )dσ, (6.1)

where m(∂D) = 0 is Lebesgue measure of boundary ∂D.
∫
D
g(P )dσ is Lebesgue

integral in D.
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When g(P ) = 1, (6.1) becomes∫
D

f(P )dσ = f(P0)m(D). (6.2)

Based on the Theorem 6.1, the special case (6.2) and (3.18), we can construct the
following another form of residual error.

min
(h0,··· ,hm−1)∈Rm

∫
Ω

∣∣∣∣∣N
[

m∑
k=0

yk(t)

]∣∣∣∣∣ dΩ = min
(h0,··· ,hm−1)∈Rm∪t0

∣∣∣∣∣N
[

m∑
k=0

yk(t0)

]∣∣∣∣∣m(Ω),

(6.3)
where t0 ∈ Ω. In practice, m(Ω) is fixed, thus we only need to handle the following
optimization problem with optimization algorithm.

min
(h0,··· ,hm−1)∈Rm∪t0∈Ω

∣∣∣∣∣N
[

m∑
k=0

yk(t0)

]∣∣∣∣∣ . (6.4)

Test Problem 3:
Consider the following fractional-order logistic differential equation [23]{

Dα
∗ y(t) = ρy(t)(1− y(t)),

y(0) = y0,
(6.5)

where t > 0, 0 < α ≤ 1, ρ > 0. Note that the exact solution of (6.5) is y(t) = eρt

1+eρt

when α = 1. The first three terms of HAM series solution are as follows: y1(t) =
A

Γ(α+1) t
α, y2(t) =

B
Γ(α+1) t

α+ C
Γ(2α+1) t

2α, y3(t) =
D

Γ(α+1) t
α+ E

Γ(2α+1) t
2α+ F

Γ(3α+1) t
3α,

where A = ρh(y20 − y0), B = (1 + h)A, C = ρ2h2(y20 − y0)(2y0 − 1), D = (1 + h)B,
E = (1 + h)C + ρ2h2(1 + h)(y20 − y0)(2y0 − 1), F = ρ3h3(y20 − y0)(2y0 − 1)2 +

ρ2h2(y20 − y0)
Γ(2α+1)
Γ2(α+1) . Hence, the 3-order approximate solution of problem (6.5)

with one homotopy parameter h can be given by

ỹm(t) = y0 +
(A+B +D)tα

Γ(α+ 1)
+

(C + E)t2α

Γ(2α+ 1)
+

Ft3α

Γ(3α+ 1)
(6.6)

andDα
∗ ỹm(t) = A+B+D+ C+E

Γ(α+1) t
α+ F

Γ(2α+1) t
2α. Construct F2 =

∣∣∣N [∑3
i=0 yi(t)

]∣∣∣
and get the optimization problem

min
h∈R∪t∈Ω

F2, (6.7)

where N (y(t)) = Dα
∗ y(t)− ρy(t)(1− y(t)). Now, fix the order α = 0.98, Ω = (0, 2]

and ρ = y0 = 0.5, we use PSO algorithm to deal with this optimization problem
(6.7) and get optimal convergence-control parameters: h = −0.99999809125743, t =
9.083730616909948× 10−10, F2 = 0. The numerical results are shown in Figures 5
and 6.

Remark 6.1. During the operation of each procedure, the value of h and t may
be different, but F2 and h are stable in the vicinity of 0 and −1 respectively. The
results obtained in this section are consistent with ones of h-curve [23]. Where,
the valid region of h is a horizontal line segment. It’s a rough range. But in this
method, we get a specific value of h. This is more likely to be chosen.
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7. Conclusions

There are two important goals that we have achieved in the present paper. First
one is employing the PSO to deal with the optimal problem of optimal HAM. This
method is different from the previous literatures which are based on the necessary
conditions for the existence of extremum. The PSO algorithm avoids solving non-
linear equations. It is directly applied to deal with optimal problem minF2, then
get optimal convergence-control parameters. Meanwhile, finding better global opti-
mization algorithm for this problem can be an interesting topic for future research
work. Another important part of the study is to present optimal HAM to solving
approximate analytical solutions of nonlinear FDE. It is usually difficult to obtain
the exact solution. The presented examples show that the results (approximate an-
alytical solution) of the proposed method are in excellent agreement with numerical
solution and exact solution. In addition, the problem of convergence of HAM for
FDE has also been studied. All of these indicate that the combination of optimal
HAM and PSO is very effective. Finally, the new form of residual error proposed
here requires further study.
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