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IMPULSIVE SYNCHRONIZATION OF
TIME-VARYING DYNAMICAL NETWORK∗

Zhaoyan Wu† and Xiaoli Gong

Abstract Synchronization of time-varying dynamical network is investigated
via impulsive control. Based on the Lyapunov function method and stabili-
ty theory of impulsive differential equation, a synchronization criterion with
respect to the system parameters and the impulsive gains and intervals is an-
alytically derived. Further, an adaptive strategy is introduced for designing
unified impulsive controllers, with a corresponding synchronization criterion
derived. In this proposed adaptive control scheme, the impulsive instants ad-
just themselves to the needed values as time goes on, and an algorithm for
determining the impulsive instants is provided and evaluated. The derived
theoretical results are illustrated to be effective by several numerical exam-
ples.
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1. Introduction

Many large-scale real systems consisting of interactive individuals are usually mod-
eled and studied by complex dynamical networks [1, 2, 4]. In dynamical networks,
the nodes denote the individuals and the edges denote the interactions among the
individuals. For better describing the real systems, many kinds of network mod-
els are introduced, such as, weighted networks [12, 13], directed networks [10, 16],
colored networks [17,18], time-varying networks [3,5,11,14,19], and so on. As a typ-
ical collective dynamical behavior of complex networks, synchronization has been
found and studied in many fields from biology to human society to Internet. In
practical applications, synchronization can be beneficial. For example, in computer
science, especially in parallel computing, synchronization means the coordination of
simultaneous threads or processes to complete a task of obtaining a correct runtime
order while avoiding unexpected race conditions [4]. On the other hand, many real
systems cannot achieve synchronization themselves without external control due
to their complexity. Therefore, how to design effective controllers is an important
issue.

Impulsive control is a typical discrete control scheme, in which the controllers
are applied on the nodes only at a sequence of discrete instants. That is, the
impulsive controllers have a relatively simple structure and are easy to implement
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and low-cost. Therefore, many valuable results about synchronization of dynamical
networks via impulsive control have been obtained [6, 7, 9, 15, 20]. The key point
in designing impulsive controllers is to derive the conditions for estimating the
impulsive gains and intervals. Usually, the impulsive gains and intervals are affected
by some constants, such as, the Lipschitz-like constant with respect to the node
dynamics and the largest eigenvalue with respect to the coupling matrices. For
any given dynamical network, one can easy to choose proper impulsive gains and
intervals when the constants are known. However, different dynamical networks
may have totally different system parameters, i.e., the impulsive controllers with
fixed impulsive gains and intervals are not unified. Further, in some cases, the
constants may be difficult to calculate. For example, in time-varying networks,
the outer coupling matrix changes along time and its largest eigenvalue is hard to
estimated. Naturally, how to design effective and unified impulsive controllers is a
challenging problem and deserves further studies.

Motivated by the above discussions, this paper consider the synchronization
problem of time-varying network via impulsive control. In Section 2, the time-
varying network model and some preliminaries are introduced. In Section 3, the
synchronization of time-varying network is studied through designing proper im-
pulsive controllers. Firstly, some synchronization conditions with respect to the
system parameters and the impulsive gains and intervals are analytically derived.
Secondly, proper adaptive strategy is introduced in impulsive controllers for design-
ing unified controllers. In this control scheme, a parameter with adaptive updating
law is introduced to estimate the constants with respect to node dynamics and cou-
pling matrices. That is, the constants need not to be calculated beforehand and the
impulsive gains or instants can be chosen or estimated according to the proposed
adaptive strategy. In Section 4, some numerical simulations are performed to verify
the correctness and effectiveness of the obtained results. In Section 5, this paper is
concluded.

2. Model description and preliminaries

Consider a time-varying dynamical network consisting of N nodes, described by

ẋi(t) = f(xi(t)) +

N∑
j=1,j ̸=i

cij(t)H(xj(t)− xi(t)), i = 1, 2, · · · , N, (2.1)

where xi(t) = (xi1(t), xi2(t), · · · , xin(t))
T ∈ Rn is the state vector of node i, f :

Rn → Rn is a nonlinear vector-valued function, H = diag(h1, h2, · · · , hn) ∈ Rn×n

is the inner coupling matrix, C(t) = (cij(t))N×N is the zero-row-sum outer coupling
matrix at time t, defined as: if there is a connection between nodes i and j at
time t, then cij(t) = cji(t) ̸= 0 (i ̸= j); otherwise, cij(t) = 0, and the diagonal

elements of matrix C(t) are defined by cii(t) = −
∑N

j=1,j ̸=i cij(t). The objective
here is to synchronize network (2.1) with a desired orbit s(t) through designing
proper impulsive controllers, where s(t) is a solution of an isolated node satisfying
ṡ(t) = f(s(t)). The controlled network can be described by

ẋi(t) = f(xi(t)) +
N∑
j=1

cij(t)Hxj(t), t ̸= tk,
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xi(t
+
k ) = xi(t

−
k ) + b(tk)(xi(t

−
k )− s(tk)), t = tk, (2.2)

where tk (k = 1, 2, · · · ) are the impulsive instants and satisfy 0 = t0 < t1 <
t2 < · · · < tk < · · · , and tk → ∞ as k → ∞, xi(t

+
k ) = limt→t+k

xi(t), xi(t
−
k ) =

limt→t−k
xi(t), any solution of (2.2) is assumed to be left continuous at each tk, i.e.,

xi(t
−
k ) = xi(tk), b(tk) is the impulsive gain at t = tk and b(t) = 0 for t ̸= tk.
Let ei(t) = xi(t)− s(t) be the synchronization error, one has the following error

system

ėi(t) = f(xi(t))− f(s(t)) +
N∑
j=1

cij(t)Hej(t), t ̸= tk,

ei(t
+
k ) = ei(t

−
k ) + b(tk)ei(t

−
k ), t = tk. (2.3)

Assumption 2.1. Suppose that there exists a positive constant L such that

(y(t)− x(t))T (f(y(t))− f(x(t))) ≤ L(y(t)− x(t))T (y(t)− x(t)),

hold for any x(t), y(t) ∈ Rn and t > 0.

Remark 2.1. It is easy to check that many typical chaotic systems, such as the
Chen, Lü and Lorenz systems, all satisfy the Assumption 2.1.

3. Main results

Let e(t) = (eT1 (t), e
T
2 (t), · · · , eTN (t))T , τk = tk − tk−1 denote impulsive intervals,

β(tk) = (1 + b(tk))
2 and β(t) = 1 for t ̸= tk, λ is the largest eigenvalue of LIN ⊗

In +C(t)⊗H for any t > 0. Throughout this paper, the entries of matrix C(t) are
assumed to be bounded, i.e., the largest eigenvalue λ is bounded.

Theorem 3.1. Suppose that Assumption 2.1 holds. If there exists a positive con-
stant α > 0 such that the following conditions

lnβ(tk) + α+ 2λτk < 0, k = 1, 2, 3, · · · , (3.1)

hold, then the synchronization of controlled network (2.2) is achieved.

Proof. Consider the following Lyapunov function:

V (t) =
1

2

N∑
i=1

eTi (t)ei(t),

for t ∈ (tk−1, tk], k = 1, 2, · · · .
When t ∈ (tk−1, tk), the derivative of V (t) along the solution of (2.3) gives

V̇ (t) =

N∑
i=1

eTi (t)ėi(t)

=

N∑
i=1

eTi (t)(f(xi(t))− f(s(t))) +

N∑
i=1

N∑
j=1

cij(t)e
T
i (t)Hej(t)

≤ eT (t)(LIN ⊗ In + C(t)⊗H)eT (t)e(t)

≤ λeT (t)e(t)

= 2λV (t),
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which gives

V (t) ≤ V (t+k−1) exp(2λ(t− tk)), t ∈ (tk−1, tk). (3.2)

When t = tk, one has

V (t+k ) =
1

2

N∑
i=1

eTi (t
+
k )ei(t

+
k )

=
(1 + b(tk))

2

2

N∑
i=1

eTi (t
−
k )ei(t

−
k )

= β(tk)V (t−k ). (3.3)

For k = 1, from inequalities (3.2) and (3.3), one has

V (t−1 ) ≤ V (t0) exp(2λτ1),

V (t+1 ) ≤ β(t1)V (t−1 ) ≤ β(t1)V (t0) exp(2λτ1).

For k = 2, we have

V (t−2 ) ≤ V (t+1 ) exp(2λτ2)

≤ β(t1)V (t0) exp(2λτ2 + 2λτ1),

V (t+2 ) ≤ β(t2)V (t−2 )

≤ β(t2)β(t1)V (t0) exp(2λτ2 + 2λτ1)

= V (t0)
2∏

j=1

(β(tj) exp(2λτj)).

By mathematical induction, one has

V (t+k ) ≤ V (t0)

k∏
j=1

β(tj) exp(2λτj).

If condition (3.1) holds, one has

β(tj) exp(2λτj) ≤ exp(−α), j = 1, 2, · · · ,

and

V (t+k ) ≤ V (t0) exp(−kα),

which implies

lim
k→∞

V (t+k ) = 0.

Then, for t ∈ (tk, tk+1], one has

V (t) ≤ V (t+k ) exp(2λ(t− tk)),

which gives V (t) → 0 as t → ∞, i.e., the synchronization is achieved. This completes
the proof.
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Remark 3.1. From conditions (3.1) in Theorem 3.1, for any given time-varying
dynamical network, one can easily choose proper impulsive gains b(tk) and impulsive
intervals τk for achieving the synchronization when the largest eigenvalue of LIN ⊗
In + C(t)⊗H is calculated.

Remark 3.2. Clearly, the largest eigenvalue λ has great effect on the impulsive
gains and intervals and is not easy to be calculated. Thus, how to introduce proper
adaptive strategy into impulsive controllers for estimating the largest eigenvalue
λ is a key issue. Further, different dynamical networks may have totally different
system parameters, i.e., the impulsive controllers with fixed impulsive gains and
intervals are not valid for different networks.

Theorem 3.2. Suppose that Assumption 2.1 holds. If there exists a positive con-
stant α > 0 such that the following conditions

lnβ(tk) + α+ 2λ̂(tk)τk < 0, k = 1, 2, 3, · · · , (3.4)

hold, where λ̂(t) is the estimation of λ,
˙̂
λ(t) = η

∑N
i=1 e

T
i (t)ei(t) and η > 0 is a

positive constant, then the synchronization of controlled network (2.2) is achieved.

Proof. Consider the following Lyapunov function:

V (t) =
1

2

N∑
i=1

eTi (t)ei(t) +
β(t)

2η
(λ̂(t)− λ)2

for t ∈ (tk−1, tk], k = 1, 2, · · · .
When t ∈ (tk−1, tk), the derivative of V (t) along the solution of (2.3) gives

V̇ (t) =
N∑
i=1

eTi (t)ėi(t) +
1

η
(λ̂(t)− λ)

˙̂
λ(t)

=
N∑
i=1

eTi (t)(f(xi(t))− f(s(t))) +
N∑
i=1

N∑
j=1

cij(t)e
T
i (t)Hej(t)

+ (λ̂(t)− λ)

N∑
i=1

eTi (t)ei(t)

≤λ̂(t)
N∑
i=1

eTi (t)ei(t)

≤2λ̂(t)V (t)

≤2λ̂(tk)V (t),

which gives

V (t) ≤ V (t+k−1) exp(2λ̂(tk)(t− tk)), t ∈ (tk−1, tk).
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When t = tk, one has

V (t+k ) =
1

2

N∑
i=1

eTi (t
+
k )ei(t

+
k ) +

β(t+k )

2η
(λ̂(t+k )− λ)2

=
(1 + b(tk))

2

2

N∑
i=1

eTi (t
−
k )ei(t

−
k ) +

β(t−k )

2η
(λ̂(t−k )− λ)2

=β(tk)V (t−k ).

Similar to the proof of Theorem 3.1, the proof can be completed.

Remark 3.3. From the conditions (3.4) in Theorem 3.2, it is easy to see that the

largest eigenvalue λ need not to be calculated beforehand and is estimated by λ̂(t).
That is, the adaptive impulsive controllers designed in Theorem 3.2 are unified for
different dynamical networks.

Remark 3.4. From conditions (3.4), it is clear that the largest eigenvalue λ need

not be known beforehand, which can be estimated by λ̂(t). If the impulsive intervals
τk and α are fixed, one can choose

− exp(−α+ 2λ̂(tk)τk
2

)− 1 + ε ≤ b(tk) ≤ exp(−α+ 2λ̂(tk)τk
2

)− 1− ε

such that conditions (3.4) in Theorem 3.2 hold, where ε is a small positive constant.

Remark 3.5. If the impulsive gains b(tk) and α are fixed, one can estimate the
control instants tk by solving a sequence of maximum value problems subject to

tk ≤ tk−1 − (lnβ(tk) + α)λ̂−1(tk)/2, k = 1, 2, · · · .

4. Numerical simulations

Consider a dynamical network consisting of 3 nodes with time-varying topology.
Choose the node dynamics as Chen system [8]

ẋ1 = 35(x2 − x1),

ẋ2 = (28− 35)x1 − x1x3 + 28x2,

ẋ3 = x1x2 − 3x3,

the inner coupling matrix as identity matrix and the time-varying outer coupling
matrix as

C(t) =

 sin(t) + exp(−t)− 2 1− sin(t) 1− exp(−t)
1− sin(t) sin(t) + cos(t)− 2 1− cos(t)

1− exp(−t) 1− cos(t) cos(t) + exp(−t)− 2

 .

Example 4.1. According to Remark 3.4, choose τk = 0.5, α = 0.001, ε = 0.001,

η = 0.02, λ̂(0) = 0.5, b(tk) = exp(−α+2λ̂(tk)τk
2 )− 1− ε and the initial values of xi(t)

and s(t) randomly. Figures 1 and 2 show the orbits of synchronization errors eij(t)
and the impulsive gains b(tk) versus k.
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Figure 1. The orbits of synchronization errors eij(t), i, j = 1, 2, 3.
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Figure 2. The impulsive intervals b(tk) versus k.

Example 4.2. Choose b(tk) = −0.9, α = 0.001, ε = 0.001, η = 0.02, λ̂(0) = 0.5 and
the initial values of xi(t) and s(t) randomly. The impulsive instants (or the impulsive
intervals) are estimated by solving the maximum value problems in Remark 3.5.
Figures 3 and 4 show the orbits of synchronization errors eij(t) and the impulsive
intervals τk versus k.

5. Conclusions

In this paper, synchronization of dynamical network with time-varying outer cou-
pling matrix is considered. Impulsive control scheme is adopted to design proper
controllers for achieving synchronization. Some synchronization conditions are first
analytically derived based on the Lyapunov function method and stability theory of
impulsive differential equation. From these conditions, one can choose the needed
values of impulsive gains and intervals when the constant with respect to system
parameters are calculated. Further, some unified impulsive controllers are designed
through introducing proper adaptive strategy. In the adaptive impulsive control
scheme, the constant need not to be calculated beforehand and is estimated by a
parameter with adaptive updating law. According to Remarks 3.4 and 3.5, the
impulsive gains can adjust themselves to proper values and the impulsive instants
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Figure 3. The orbits of synchronization errors eij(t), i, j = 1, 2, 3.

1 2 3 4 5 6 7 8 9 10 11
0.71

0.715

0.72

0.725

0.73

0.735

0.74

0.745

k

τ k

Figure 4. The impulsive intervals τk versus k.

can be estimated. All the derived results are illustrated to be effective by several
numerical simulations.
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