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A CLASS OF LYAPUNOV FUNCTIONS AND
THE GLOBAL STABILITY OF SOME

EPIDEMIC MODELS WITH NONLINEAR
INCIDENCE∗

Jianquan Li1,†, Yali Yang1,2,3, Yanni Xiao4 and Shuo Liu5

Abstract In this paper, by investigating an SIR epidemic model with non-
linear incidence, we present a new technique for proving the global stability
of the endemic equilibrium, which consists of introducing a variable transfor-
mation and constructing a more general Lyapunov function. For the model
we obtain the following results. The disease-free equilibrium is globally stable
in the feasible region as the basic reproduction number is less than or equal
to unity, and the endemic equilibrium is globally stable in the feasible region
as the basic reproduction number is greater than unity. The generality of the
technique is illustrated by considering certain nonlinear incidences and SIS
and SIRS epidemic models.
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1. Introduction

Bilinear and standard incidences have been frequently used in classical epidemic
models [15]. Several different forms of incidences have been proposed by some
researchers. Let S(t) and I(t) be the numbers of susceptible and infective individuals
at time t, respectively, Capasso and Serio [1] introduced a saturated incidence Sf(I)
into epidemic models to study of the cholera epidemic spread in Bari in 1973. The
nonlinear incidences of the forms βIpSq and βIpS/(1 + αIq) were proposed by
Liu et al. [14]. Epidemic models with the incidence βIpSq had also been studied
in [4,6,11,13]. An SEIRS epidemic model with the saturation incidence βSI/(1+aS)
was examined in [2]. Epidemic models with the incidence βIpS/(1+ aIq) had been
investigated in [16,20]. The nonlinear incidences of the form β(I + νIp)S proposed
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by van den Driessche & Watmough [18] was used in [10, 12, 21]. The more general
forms of nonlinear incidence were considered in [3, 7, 8, 17,23].

For the nonlinear incidence Sf(I), there are often two kinds of assumptions
about function f(I). One is that the number of effective contacts between infec-
tive and susceptible individuals may be saturated at high infective levels due to
crowding of infective individuals or due to the protection measures by the suscep-
tible individuals. The other is that the number of effective contacts is decreasing
when the number of infective individuals is large. This can be used to interpret the
“psychological” effect: for a very large number of infectives the infection force may
decrease as the number of infective individuals increases, because in the presence of
large number of infectives the population may tend to reduce the number of con-
tacts per unit time. For example, function f(I) = βIp/(1+aIq) corresponds to the
former case as p = q and the latter one as p < q.

For an epidemic dynamical model, global analysis on the feasible region is an
important issue for understanding the transmission mechanism of the infection.
The most common method to prove the global stability of epidemic models is the
Lyapunov’s direct method. The key to applying the method is to construct an ap-
propriate Lyapunov function and prove the negative or seminegative definiteness of
the associated derivative. However, when an equilibrium of the dynamical system is
indeed globally stable on the region, it usually may not be easy to find such an ap-
propriate Lyapunov function, or we can not determine if the constructed Lyapunov
function is suitable for the system since the negative or seminegative definiteness of
the associated derivative can not be proved. The main objective of this paper is to
present a new technique to prove global stability of the system by considering an
SIR epidemic model with the nonlinear incidence Sf(I). This technique consists of
two steps, the first is to introduce a new variable for equivalently making transfor-
mation, the second is to propose a class of novel Lyapunov function. In contrast to
the previous results obtained in [3,7,8,17,23], the condition obtained in this paper
is necessary and sufficient to ensure the global stability of the endemic equilibrium
in the feasible region under the assumptions.

The organization of this paper is as follows. In the next section, the idea of
constructing a Lyapunov function is introduced, and some reasonable assumptions
on the nonlinear incidence are given. In Section 3, an SIR epidemic model with
nonlinear incidence is investigated, the global stability of the model is considered
by introducing a new variable and constructing a new class of Lyapunov function,
and the advantages of the technique of the new class of Lyapunov function are shown
by two remarks. Finally, we illustrate the generality and benefit of the technique
presented here by considering two different epidemic models.

2. Lyapunov function and nonlinear incidence

Lyapunov functions of the integral form∫ x

x∗

f(u)− f(x∗)

f(u)
du (2.1)

have been used in many epidemic models with nonlinear incidence [3, 7, 8, 17, 23],
which is generalization of the logarithmic form x− x∗ − x∗ ln(x/x∗) since

x− x∗ − x∗ ln
x

x∗ =

∫ x

x∗

u− x∗

u
du. (2.2)
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However, for some epidemic models, applying the Lyapunov functions of form (2.1)
can only give the sufficient instead of the unnecessary condition on the global sta-
bility of the endemic equilibrium [3,7,8,17,23]. In [5,22], the Lyapunov functions of
the linear combination form of two types of functions, the perfect square expression
(x − x∗)2 and the logarithmic one (2.2), were used to examine global stability of
the endemic states.

Note that the integral expression∫ x

x∗

u− x∗

f(u)
du, (2.3)

which is different from form (2.1), is the other extended form of form (2.2), sine
(2.3) can become (2.2) as f(u) = u. So we may extend the Lypunov functions of
the linear combination form of the perfect square and the logarithmic expressions
into a new form, i.e., the linear combination of the perfect square expression and
the integral one (2.3), and apply them to prove the global stability of SIS, SIR and
SIRS epidemic models with the nonlinear incidence Sf(I).

For the nonlinear incidence Sf(I), we assume that f(I) is a real locally Lipschitz
function at least on [0,+∞) which satisfies the following conditions:

(i) f(0) = 0, f(I) > 0 for I > 0;

(ii) f(I)/I is continuous and monotonely nonincreasing for I > 0, and limI→0+ f(I)/I
exists, denoted by β(0 < β < +∞);

(iii)
∫ 1

0+
1/f(u)du = +∞.

Here, the first condition is obvious. Since the incidence Sf(I) can be rewritten as
[f(I)/I]SI, function f(I)/I refers to effective contact rate between an infective and
a susceptible individuals. The second condition implies that the effective contact
rate between infective and susceptible individuals is nonincreasing with increase of
infectives, and the existence of the limit of function f(I)/I as I → 0+ shows that
the effective contact rate is bounded above, that is, f(I)/I ≤ β for I > 0. Functions
satisfying the conditions (i) and (ii) may accord with the assumptions about function
f(I) stated in the previous section. Obviously, function f(I) = βI/(1 + aIp)(a ≥
0, β > 0, p > 0) satisfies the above conditions. On the basis of the conditions (i) and

(ii), the third condition is used to ensure that the integration
∫ I

I∗(u− I∗)/f(u)du is
positive definite and radially unbounded in the interval (0,+∞).

3. SIR model and its global stability

In this section, we consider an SIR epidemic model with the nonlinear incidence
Sf(I),

dS

dt
= µA− µS − Sf(I),

dI

dt
= Sf(I)− (µ+ γ + α)I,

dR

dt
= γI − µR, (3.1)

where function f(I) satisfies the conditions proposed in Section 2. And, S = S(t),
I = I(t) and R = R(t) represent the numbers of individuals in the susceptible,
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infected and removed compartments at time t, respectively. µ denotes the per capita
natural death rate, µA the recruitment of susceptible individuals, γ the recovery
rate of an infected individual, α the per capita disease-induced death rate.

Since the variable R in SIR model (3.1) does not appear in the equations of S
and I, for model (3.1) we only need to consider the subsystem

dS

dt
= µA− µS − Sf(I),

dI

dt
= Sf(I)− (µ+ γ + α)I. (3.2)

From model (3.2) we have

d(S + I)

dt
= µA− µ(S + I)− (γ + α)I ≤ µA− µ(S + I) for I ≥ 0,

then it follows that lim supt→∞(S + I) ≤ A. Therefore, the region

Ω =
{
(S, I) ∈ R2

+ : S + I ≤ A
}

is a positively invariant attractive set for model (3.2).
Obviously, system (3.2) always has the disease-free equilibrium E0(A, 0). Again,

if model (3.2) has a positive (endemic) equilibrium E∗(S∗, I∗) (I∗ > 0), S∗ and I∗

satisfy the following equations

µA− µS − Sf(I) = 0,

Sf(I)− (µ+ γ + α)I = 0. (3.3)

From the last equation of equations (3.3) we have S = (µ + γ + α)I/f(I).
Substituting it into the first equation of (3.3) yields the following equation

H(I)
△
= µ(µ+ γ + α)

I

f(I)
+ (µ+ γ + α) I − µA = 0. (3.4)

According to condition (ii) in Section 2, function H(I) is strictly increasing, and

lim
t→0+

H(I) = µ

(
µ+ γ + α

β
−A

)
=

µ(µ+ γ + α)

β

(
1− βA

µ+ γ + α

)
.

Notice that H(A) > 0, then, equation (3.4) has no root in the interval (0, A) as
βA/(µ+ γ + α) ≤ 1 and has a unique root in the interval (0, A) as βA/(µ+ γ + α) >
1.

For model (3.2), we easily get that 1/(µ+γ+α) is the average infectious period,
A is the number of susceptible individuals at steady state in the absence of infection,
and limI→0+ f(I)/I = β for the effective contact rate f(I)/I, then their product
βA/(µ+γ+α) is the basic reproduction number of model (3.2), that is, the average
number of secondary infections produced when one infective individual is introduced
into a completely susceptible population. We denote the basic reproduction number
as R0, i.e., R0 = βA/(µ+ γ + α). Consequently, we have the following results with
respect to the existence of equilibria of model (3.2).

Theorem 3.1. When R0 ≤ 1, model (3.2) has only the disease-free equilibrium
E0(A, 0); when R0 > 1, besides the disease-free equilibrium E0, model (3.2) also
has a unique endemic equilibrium E∗(S∗, I∗) where S∗ = (µ+ γ + α)I∗/f(I∗), and
I∗ is the positive root of equation (3.4) in the interval (0, A).
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The following theorem provides the global properties of model (3.2) on the fea-
sible region Ω.

Theorem 3.2. For model (3.2), the disease-free equilibrium E0 is globally stable
on the feasible region Ω as R0 ≤ 1, the endemic equilibrium E∗ is globally stable in
the feasible region Ω as R0 > 1.

Proof. We first consider the global stability of the disease-free equilibrium E0.
Define a function V = I, then the derivative of function V along solutions of

model (3.2) is

dV

dt
=Sf(I)− (µ+ γ + α)I ≤ I [βS − (µ+ γ + α)]

≤I [βA− (µ+ γ + α)] = (µ+ γ + α)(R0 − 1)V,

where condition (ii) in Section 2 and S ≤ A are used. Thus, dV/dt ≤ 0 as R0 ≤ 1.
It is obvious that dV/dt = 0 is equivalent to S = (µ+ γ + α)I/f(I). According

to condition (ii) in Section 2,

(µ+ γ + α)I

f(I)
≥ µ+ γ + α

β
=

A

R0
for I > 0,

then, (µ+ γ + α)I/f(I) ≥ A as R0 ≤ 1. So the largest invariant set of model (3.2)
on the set in which dV/dt = 0 is the singleton {E0}. It follows from the LaSalle’s
Invariance Principle [9] that the disease-free equilibrium E0 is globally stable on the
feasible region Ω.

Next, we will prove the global stability of the endemic equilibrium E∗. For
simplicity, we introduce a new variable N = S + I, (3.2) can become the following
system

dI

dt
= (N − I)f(I)− (µ+ γ + α)I,

dN

dt
= µA− µN − (γ + α)I. (3.5)

Correspondingly, system (3.5) has a unique positive equilibrium Ē∗(I∗, N∗) as
R0 > 1, where N∗ = S∗ + I∗. Since I∗ and N∗ satisfy the following equations

(N∗ − I∗) = (µ+ γ + α)
I∗

f(I∗)
,

µA = µN∗ + (γ + α)I∗,

system (3.5) can be rewritten as

dI

dt
= f(I)

{
[(N −N∗)− (I − I∗)]− (µ+ γ + α)

[
I

f(I)
− I∗

f(I∗)

]}
,

dN

dt
= −µ(N −N∗)− (γ + α)(I − I∗). (3.6)

Define a Lyapunov function

V1 =

∫ I

I∗

u− I∗

f(u)
du+

1

2(γ + α)
(N −N∗)2, (3.7)
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then the derivative of function V1 along solutions of system (3.6) is given by

dV1

dt
= −(I − I∗)2 − (µ+ γ + α)(I − I∗)

[
I

f(I)
− I∗

f(I∗)

]
− µ

γ + α
(N −N∗)2.

According to the assumption (ii) in Section 2, (I − I∗) [I/f(I)− I∗/f(I∗)] ≥ 0 for
I > 0, then dV1/dt is negative definite with respect to I = I∗ and N = N∗. Thus, it
follows from the Lyapunov Stability Theorem [19] that the positive equilibrium Ē∗

of (3.5) is globally stable in the first quadrant. Therefore, the endemic equilibria
E∗ of models (3.2) is globally stable in the feasible region Ω if it is feasible.

This completes the proof of Theorem 3.2.
Theorem 3.2 showed that the endemic equilibrium E∗ of model (3.2) is globally

stable in the feasible region if it exists. Note that we first changed the original
model (3.2) into the system (3.5) by introducing the transformation of variables,
and then applied the Lyapunov function (3.7) with the linear combination form of

the perfect square expression (N −N∗)2 and the integral one
∫ I

I∗ [(u− I∗)/f(u)] du
to prove the global stability. In the following remarks, we illustrate the advantage
of the method for proving the global stability of the endemic equilibrium E∗.

Remark 3.1. Introducing the transformation of variables changes the original
model (3.2) into the system (3.5) which includes a linear differential equation. This
makes constructing the appropriate Lyapunov function easier, and determining the
negative definiteness of the associated derivative much simpler. Theoretically, al-
though these operations are not necessary, since the new variable N can be ex-
pressed by the original ones, they are indeed such that the investigated system and
calculations become relatively simple.

Remark 3.2. The Lyapunov function used here is the linear combination form of
the perfect square expression and the integral one (2.3). According to the com-
mon idea of constructing Lyapunov function, we could also expect that one of the
following functions would be available,

V2 =

∫ I

I∗

f(u)− f(I∗)

f(u)
du+

m

2
(N −N∗)2,

V3 =

∫ I

I∗

u− I∗

f(u)
du+m

∫ N

N∗

u−N∗

u
du,

and

V4 =

∫ I

I∗

f(u)− f(I∗)

f(u)
du+m

∫ N

N∗

u−N∗

u
du.

However, we barely obtain conditions such that one of their derivatives is negative
or seminegative definite, which means these functions may not be suitable for this
system under assumptions in Section 2. Therefore, only the Lyapunov function V1

is appropriate for model (3.5).

4. Discussion

In the preceding section, we considered an SIR epidemic model and proved the
global stability of the endemic equilibrium E∗ by changing the original model (3.2)
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into the system (3.5) by introducing a transformation of variable and then applying
the Lyapunov function (3.7). The process of proving the global stability provides
indeed a new technique. It can be easily verified that the proposed technique is
suitable for SIS model

dS

dt
= µA− µS − Sf(I) + γI,

dI

dt
= Sf(I)− (µ+ γ + α)I, (4.1)

and SIRS model

dS

dt
= µA− µS − Sf(I) + εR,

dI

dt
= Sf(I)− (µ+ γ + α)I,

dR

dt
= γI − (µ+ ε)R, (4.2)

where f(I) satisfies assumptions in Section 2.
It is important to mention that, to some extent, introducing a transformation

of variables is necessary in our technique. If we directly consider the original model
(3.2), we usually apply one of the following functions as the Lyapunov function

V5 = m

∫ S

S∗

u− S∗

u
du+

∫ I

I∗

f(u)− f(I∗)

f(u)
du

V6 =
m

2S∗ (S − S∗)2 +

∫ I

I∗

f(u)− f(I∗)

f(u)
du,

V7 = m

∫ S

S∗

u− S∗

u
du+

∫ I

I∗

u− I∗

f(u)
du,

and

V8 =
m

2S∗ (S − S∗)2 +

∫ I

I∗

u− I∗

f(u)
du

to proving the global stability of the endemic equilibrium E∗, where the constant
m is positive and left unspecified.

For functions V5 and V6, the condition

(I − I∗) [f(I)− f(I∗)] > 0 for I ̸= I∗, I > 0 (4.3)

is necessary to ensure their positive definiteness. When we choose m = 1, the
derivatives of functions V5 and V6 along solutions of (3.2) are

dV5

dt
=− (µ+ α) [f(I)− f(I∗)]

[
I

f(I)
− I∗

f(I∗)

]
− µA

(S − S∗)2

S
,

and

dV6

dt
=− (µ+ α) [f(I)− f(I∗)]

[
I

f(I)
− I∗

f(I∗)

]
− [µ+ f(I)]

(S − S∗)2

S∗ ,
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respectively. In order to make dV5/dt ≤ 0 or dV6/dt ≤ 0, both of them need the
condition [

f(I)

I
− f(I∗)

I∗

] [
f(I)

f(I∗)
− 1

]
≤ 0 for I > 0. (4.4)

This implies that, when applying either V5 or V6 as Lyapunov function, both condi-
tions (4.3) and (4.4) are needed except for assumptions in Section 2. But Theorem
3.2 have shown that both conditions (4.3) and (4.4) could be unnecessary, then the
conditions obtained by applying functions V5 and V6 are sufficient but unnecessary.
Additionally, it is difficult to obtain conditions such that the derivative of function
V7 or V8 is negative or seminegative definite. This implies that they are also not
suitable for model (3.2).

In summary, we think that the technique presented here is effective for some epi-
demic models with nonlinear incidence Sf(I) with f(I) satisfying the assumptions
in Section 2. The contribution of this study on constructing the Lyapunov function
is to propose a new form (2.3) of the Lyapunov function. Note that the incidence
of form Sf(I) is relatively specific compared to the form g(S)f(I) or f(S, I). For
example, function Ip/(1 + aIq) does not satisfy the assumptions in Section 2 for
certain values of p > 0 and q > 0. This means that formulating a suitable Lyapunov
function is still a challenge to prove global stability of the more general systems.
We could suggest that one may take priority of the linear combination of some of
the functions

(x− x∗)2,

∫ x

x∗

u− x∗

u
du,

∫ x

x∗

u− x∗

f(u)
du,

∫ x

x∗

f(u)− f(x∗)

f(u)
du,

∫ x

x∗

f(u)− f(x∗)

u
du.
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