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OPTIMAL TEMPORAL PATH ON SPATIAL
DECAYING NETWORKS∗
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Abstract We introduce temporal effect to the classical Kleinberg model and
study how it affects the spatial structure of optimal transport network. The
initial network is built from a regular d-dimensional lattice added by shortcuts
with probability p(rij) ∼ r−α

ij , where rij is the geometric distance between
node i and j. By assigning each shortcut an energy E = r ·τ , a link with length
r survives within period τ , which leads the network to a decaying dynamics
of constantly losing long-range links. We find new optimal transport in the
dynamical system for α = 3

4
d , in contrast to any other result in static systems.

The conclusion does not depend on the information used for navigation, being
based on local or global knowledge of the network, which indicates the possi-
bility of the optimal design for general transport dynamics in the time-varying
network.
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1. Introduction

Finding short path is of great importance for understanding the propagation dy-
namics on complex networks. Much attention has been dedicated to the issue due
to its wide application, ranging from small-world effect [33, 35], search and naviga-
tion [2–4,6,13,14,16,17,19,21,22,29,30,36] to optimal network design [7,20,23]. The
most famous study was done by Kleinberg, who proved the existence of the unique
spatial structure supporting efficient navigation with local information [16,17]. The
framework of the model inspired the subsequent work, including optimal design
for cost-limited system [19, 21, 22] and the enhanced Laplacian flow conditions in
small-world networks [24]. All of them contributed to our knowledge of transport
dynamics on spatial networks with static topology.

On the other hand, many complex systems are inherently dynamic as connec-
tions can appear and disappear adaptively. In particular, when the time scale
of the transport dynamics is comparable to that of the topology fluctuation, the
propagation process goes beyond our traditional knowledge. In this case, a trans-
port path relies on not only the topology but also how the topologies are ordered
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in time. In other words, the transport dynamics relates to the time arrows of
the topology fluctuation rather than the aggregated structure as in static net-
work [11, 12, 15, 25–27, 33, 34]. The path in such system is called temporal path
and the network is named time-varying network [11,12]. The temporal path gener-
alizes the basic concept of shortest path in static graph, so that a variety of metrics,
such as connectivity, clustering, betweeness centrality should be modified, as has
been done in previous studies [11,12,15,25,33,34]. Consequently the ongoing trans-
port dynamics based on these metrics can fundamentally change, which urges us to
reconsider and generalize the traditional conclusions on the efficient structure for
navigation.

Fortunately, the topology fluctuation is not completely random but dominated
by intrinsic rules [5,8,28,31]. And various networks share some common properties:
i) the network is usually spatially embedded, ii) the communication frequency or
duration decays with the geometric distance, iii) the system is energy limited so
that the link activity gradually dies out in a period. A typical example for the
three properties is the human communication dynamics where the individuals are
spatially embedded [1, 9, 32]. To our intuitive, we can easily communicate with
people geographically or socially close but less frequently with those of distance.
Besides, the biological nature restricts our activity intensity, forming clear period
pattern as one day or one week. Many other systems associated with human dynam-
ics such as airport network and Internet of Vehicles exhibit similar properties. But
the geometric constraint on link durations, which surely plays a role in real-world
networks, has not yet been revealed in most time-varying models [10,27,34].

Motivated by these considerations, we modify the Kleinberg model by intro-
ducing the temporal metrics and study the common influence of geometric and
temporal effect on the navigation characteristics. We aim to determine its general
behavior of the optimal transport, including the spatial structure and small-world
phenomenon for both local and global information used. The paper is organized as
follows. In Section II we propose the temporal network model and briefly present its
basic properties. In Section III and IV, we study in detail the optimal path based on
global and local knowledge of the network structure, respectively. We find that the
introduction of the temporal effect subjected to energy and geometric constraints
maintains the optimal behavior of the short path but changes the optimal exponent
to α = 3

4d, in sharp contrast to the results obtained for any static systems. In
Section V we draw the conclusion.

2. Model description

The classical Kleinberg model is built on a regular d-dimensional lattice. Each node
i creates a shortcut(long-range link) to a distant node j according to the probability

p(rij) =
r−α
ij∑
j r

−α
ij

, (2.1)

where rij = |ri−rj | is the Manhattan distance between i and j, and α is an exponent
that controls the average length of shortcuts. When α = 0, the network minimizes
the average distance of its shortest paths [18]. If each node uses only the position
of the target and its neighbor for routing, without global topological knowledge,
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Figure 1. Examples of our model for the one-dimensional case. The evolutionary process of α = 0,
α = 1 and α → ∞ are illustrated. The model starts from the Kleinberg network and degenerates
gradually to the static lattice. The shortcut disconnects when time t exceeds its life time τ . For α = 0,
long-range links disappear too quickly to support later transport. For α = ∞, lengths of shortcuts are
not long enough to decrease the path distance. The intermediate case of α = 1 shows better transport
performance, with shortcuts of moderate length existing for a long time.

the actual navigated paths exhibit optimal at α = d [16,17]. Some other conditions
such as cost constraints can change the optimal exponent to α = d+ 1 [19].

Our model follows the similar construction except for two more new rules:

i) Temporal rule: each shortcut is assigned an energy

E = τ · r , (2.2)

where r is the Manhattan distance and τ is the lifetime of the shortcut.

ii) Evolution rule: the network starts with the classical Kleinberg model and
evolves according to i).

The temporal rule follows the general condition that communication duration
decreases with the spatial distance. It introduces the time-varying effect by life-
time τ . The evolution rule indicates a structure decaying process, as the network
loses shortcuts constantly and degenerates to a static lattice. It mimics the dis-
sipative process in the energy-limited systems. The whole evolution of our model
is visualized in Figure 1. With the increasing time, the network evolves from the
Kleinberg model to the periodic lattice. The temporal path can be calculated from
the graph sequence according to its definition. Note that a shortcut contributes to
the transport dynamics only within its lifetime.

The equations (2.1) and (2.2) determine the basic properties of our model. The
lifetime distribution of shortcuts can be easily deduced to be p(τ) ∼ τ−(d+1−α),
indicating that large α causes more long-life shortcuts. Intuitively, more long-life
shortcuts improve the transport performance. Therefore large α can decrease the
average temporal path distance. On the other hand, the equation (2.1) indicates
that larger α causes more local shortcuts of small r, which increases the path dis-
tance. Thus we expect an optimal α, balancing the distribution of τ and r, that
leads the system to the most efficient transport. We present an example in Figure
1. For α = 0, shortcuts of long-range are abundant at initial time but decrease
so quickly that they disappear before messages arrive. On the other hand, large
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Figure 2. (a) Average temporal shortest path length ⟨T ⟩ versus α for one-dimensional case. The

optimal value αopt is near 0.75. Inset: Finite size analysis presents αopt = −4.651 ·N−0.5 +0.754(fitted
by blue solid line), indicating αopt → 0.75 in the limit of N → ∞. (b) Average temporal shortest path
length ⟨T ⟩ versus the network size N . For 0.5 ≤ α ≤ 1, ⟨T ⟩ grows slowly as ⟨T ⟩ ∼ logγ(N), which is
a signature of small-world effect. The minimum of γ occurs at α = 0.75, consistent with the value of
αopt, as shown in the inset. For α < 0.5 and α > 1, a power-law relation ⟨T ⟩ ∼ Nβ emerges.

α → ∞ causes short-length shortcuts. The network becomes tightly clustered, lead-
ing to low transport efficiency as regular lattice even though shortcuts maintain in
the whole period. A better case occurs at α = 1, where sufficient shortcuts with
moderate length exist for a long time.

3. Navigation with global information

To investigate the temporal path quantitatively, we study the relation between
exponent α and the average distance of shortest temporal path ⟨T ⟩ by extensive
simulations. We assume that the energy E equals to the diameter of the underlying
lattice, i.e. the longest shortest path. This assumption is self-consistent in the sense
that for those shortcuts of τ = 1, their length does not exceed the upper bound
of the geometric distance constrained by the spatial structure, as indicated by the
equation (2.2). In the case of the periodic lattice of one and two dimension, E = N

2

and
√
N respectively.

We firstly investigate the navigation path with global information, i.e. the aver-
age shortest temporal path ⟨T ⟩, for one-dimensional case. As is depicted in Figure
2, it shows clearly the existence of the optimal transport at αopt ≈ 0.75 for large
networks of size N . To get the precise αopt of N → ∞, we apply the finite size
scaling analysis. As shown in inset of Figure 2(a) and fitted by the blue dashed
line, we find αopt = −4.651 ·N−0.5 + 0.754 , which confirms αopt = 0.75.

In Figure 2(b), we show the relation between ⟨T ⟩ and network size N . We
observe two distinctive behaviors. For 0.5 ≤ α ≤ 1, the average shortest path
length ⟨T ⟩ increases as ⟨T ⟩ ∼ logγ N , which is a typical signature of small-world
effect. For those α tested out of the range, the small-world property disappears.
Instead, a power-law dependence of ⟨T ⟩ ∼ Nβ takes over. Intuitively, smaller γ
causes slower increase of the path length, indicating shorter ⟨T ⟩. Therefore relation
between γ and α provides another way to confirm the optimal transport exponent.
As shown in the inset, the minimum of γ stays exactly at α = 0.75, consistent with
the result obtained by finite size scaling approach.

For the case of two dimension, we apply similar analysis. The optimal ⟨T ⟩
locates at αopt ≈ 1.5, as shown in Figure 3(a). The finite size scaling analysis gives
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Figure 3. (a) Average temporal shortest path length ⟨T ⟩ versus α for two-dimensional case. The

optimal value αopt is near 1.5. Inset:Finite size analysis presents αopt = −19.572 · L−1 + 1.568 (fitted

by blue solid line), where L =
√
N . It indicates αopt → 1.5 in the limit of N → ∞. (b) Average

temporal shortest path length ⟨T ⟩ versus the network linear size L. For 1 ≤ α ≤ 2, ⟨T ⟩ grows slowly
as ⟨T ⟩ ∼ logγ(L), which is a signature of small-world effect. The minimum of γ occurs at α = 1.5,
consistent with the value of αopt, as shown in the inset. For α < 1 and α > 2, a power-law relation

⟨T ⟩ ∼ Lβ emerges.

αopt = −19.572 · L−1 + 1.568, confirming αopt = 1.5 for L → ∞, where L =
√
N

is the linear size of the network. The relation between ⟨T ⟩ and L again shows two
different behaviors. For 1 ≤ α ≤ 2, ⟨T ⟩ grows slowly as ⟨T ⟩ ∼ logγ N . For α < 1
and α > 2, a power-law relation ⟨T ⟩ ∼ Lβ emerges.

The simulation results for both one and two dimension indicate the following
conclusion. There exists an optimal state for the transport dynamics in the time-
varying network. Based on several different simulations and finite size scaling anal-
ysis, we conjecture that the optimal state occurs in a new spatial structure with the
exponent

αopt =
3

4
d, (3.1)

in sharp contrast to αopt = 0 [16, 17]and αopt = d+ 1 [19] found in static network.
The small-world property emerges in the new range of

d/2 ≤ α ≤ d. (3.2)

In Ref. [19], the cost constraint leads to the small world occuring at a single value
of α. Under the similar constraint, our model shows a wider α for efficient routing,
which indicates a much more relaxed condition for transport design.

4. Navigation with local information

In many practical cases, individuals can use only local information for transport
routing. Here local information refers to the coordinate of target and neighbors
only, without knowledge of global topological details. The limited information may
cause the actual navigation path to deviate from the optimal one and change the
whole transport dynamics.

To study the optimal path navigated with local information, we follow the rout-
ing strategy of classical Kleinberg model. Specifically, each message holder passes
the message to one of its neighbors, who locates the nearest to the target node. The
strategy gives optimal navigation exponent of αlocal = d for Kleinberg model [16,17].
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Figure 4. (a) Average length of temporal navigation path ⟨T ⟩ with local information versus α for
one-dimensional case. The optimal α is observed close to 0.75. (b) ⟨T ⟩ versus the network size N for

different α. All the ⟨T ⟩ follow a power-law behavior, ⟨T ⟩ ∼ Nβ . The minimum of β is observed at
α = 0.75, consistent with the result in (a), as depicted in the Inset. All the results are averaged over
100 independent realizations.
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Figure 5. (a) Average length of temporal navigation path ⟨T ⟩ with local information versus α for two-

dimensional case. The optimal α is observed close to 1.5. (b) ⟨T ⟩ versus the network linear size L =
√
N

for different α. All the ⟨T ⟩ follow a power-law behavior, ⟨T ⟩ ∼ Lβ . The minimum of β is observed at
α = 1.5, consistent with the result in (a), as depicted in the Inset. All the results are averaged over 100
independent realizations.

In our model, the extensive simulations indicate that the optimal navigation in one-
dimensional case occurs near αlocal = 0.75, as shown in Figure 4. However, all the
⟨T ⟩ scale as ⟨T ⟩ ∼ Nβ regardless of the value that α takes. To eliminate the finite
size effect and find the precise αlocal, we measure the scaling exponent β. The
minimum β corresponds to the shortest ⟨T ⟩. As shown in the inset of Figure 4(b),
the minimum β locates at αlocal = 0.75, which is the same value as navigation
with global information found in Section III. The similar result is also found in
two-dimensional case. As shown in Figure 5, both the simulations and the finite
size scaling analysis give αlocal = αopt = 1.5. Therefore in the case of navigation
with local information, the optimal transport occurs at αlocal =

3
4d, identical with

αopt of global shortest temporal path, but the small-world effect vanishes.

5. Conclusion

We propose a time-varying model embedded on a periodic lattice and study how the
temporal effect affects the transport process. We find that the optimal transport
occurs in a new spatial structure with the optimal exponent αopt = 3

4d, in sharp
contrast to α = d and α = d + 1 established in static networks [16, 17, 19]. The
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conclusion does not depend on the information used for navigation, being based on
local or global knowledge of the network. We also determine the area of α for the
small-world feature.

Our model presents a natural way to introduce the temporal effect into spatial-
constrained networks. The decaying picture mimics the dissipative process in the
energy-limited systems, which can be relaxed to other general conditions. We have
checked our model in a more general scenario of assigning random birth time to the
shortcuts and have obtained similar results. Therefore our conclusion is not strongly
model-dependent. All these results indicate the possibility of the optimal design for
the general transport dynamics in the time-varying network. The investigations
on more practical generalizations such as the limited capacity of each node and
heterogeneous energy distribution are left open for further efforts.
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