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AND NONLINEAR DYNAMICS∗
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Abstract In this paper, we perform an in-depth study about the consen-
sus problem of heterogeneous multi-agent systems with linear and nonlinear
dynamics. Specifically, this system is composed of two classes of agents respec-
tively described by linear and nonlinear dynamics. By the aid of the adaptive
method and Lyapunov stability theory, the mean consensus problem is realized
in the framework of first-order case and second-order case under undirected
and connected networks. Still, an meaningful example is provided to verify the
effectiveness of the gained theoretical results. Our study is expected to estab-
lish a more realistic model and provide a better understanding of consensus
problem in the multi-agent system.
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1. Introduction

Recent years have witnessed an inordinate amount of attention and increasing in-
terest from various scientific communities is attracted by the consensus problems of
multi-agent systems. It has been an emerging research direction of control theory
and came into widespread use, such as sensor networks, formation, satellite clusters,
robotic systems, etc. One aim of the consensus research is to resolve the issue that
a team of agents reaches an agreement on a common value by negotiating with their
neighbors [11].

A long line of research in this field has contributed a bunch of works focusing
on the solution of the fascinating consensus problem. For example, Olfati-Saber
and Murray [12] proposed a classical research framework of consensus problem for
first-order integrator multi-agent systems under fixed and switching networks. The
proposed analysis method and consensus protocols provide inspiration for the up-
coming researchers. Inspired by the prominent work [12], many consensus algo-
rithms were introduced for first-order integrator multi-agent systems in the face of
various conditions, such as consensus with time delay [5], consensus in uncertain
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communication environments [1], with leader-following networks [4], etc. More-
over, researchers [8,10,17] also paid their attention to the consensus of second-order
multi-agent systems and nonlinear multi-agent systems.

Thus far, as in the usual model in this field, the agents in the multi-agent systems
are described by the homogeneous dynamics. However, such assumptions need to be
relaxed when considering the real systems, among which the dynamics of agents may
be heterogeneous. It is understandable that consensus problem of heterogeneous
multi-agent systems are more challenging, though more suitable to the practical
situation, since more complicated dynamics will be involved in situations like these.
Also, there is a growing literature on this meaningful issue. For instance, Zheng &
Wang [18] investigated the consensus problems in the framework of heterogeneous
multi-agent systems, which are composed of first-order linear agents and second-
order linear agents. When the communication topology is undirected, fixed and
connected, the proposed linear consensus protocol and saturated consensus protocol
are effective in guaranteeing a realizable agreement by all agents. Afterwards, a
special case is considered in [2], where the control input of partial first-order linear
agents is bounded due to the limitation of actuators. A new consensus protocol
with input saturation is proposed to solve the consensus problem of heterogeneous
multi-agent systems. Along this line, previous research has also focused on the finite-
time consensus [20] and consensus without velocity measurement information [19]
of heterogeneous multi-agent systems, respectively.

Besides the linear one, past works have also made great contribution in studying
the consensus problem of multi-agent systems with different nonlinear dynamics. By
introducing novel decentralized adaptive strategies, Liu etc. [7] investigated second-
order consensus of multi-agent systems with heterogeneous nonlinear dynamics and
time-varying delays. Combination with the pinning control method and Lyapunov
stability theory helps to realize the consensus. In [15], Wang etc. studied the con-
sensus problem for cooperative heterogeneous agents with nonlinear dynamics in a
directed network. Here, the LMI and Lyapunov theory were employed to effective-
ly obtain the global bounded consensus. Led by the proposed consensus protocol,
the agents with different nonlinear dynamics would converge to a bounded region.
Furthermore, the more challenging cases with linear and nonlinear dynamics were
also probed into by some researchers. For example, Liu etc. [9] investigated the het-
erogeneous multi-agent systems composed of first-order linear agents, second-order
linear agents and Euler-Lagrange nonlinear agents. Under undirected networks, the
proposed consensus protocols can guarantee all agent to reach a common value on
position information.

In this context, motivated by the referred works [9, 10, 15] and in an attemp-
t to explore a more realistic scenario, we consider the heterogeneous multi-agent
systems with linear and nonlinear dynamics. And more remarkably, by employing
the adaptive method and Lyapunov stability theory, the mean consensus problem
can be solved for first-order case and second-order case under undirected and con-
nected networks. Our work affords novelty to the present literatures by that the
proposed heterogeneous multi-agent system composed of linear and nonlinear dy-
namics agents in our settings, is more challenging than the current general case. At
this point, the adaptive method is adopted to solve the problem that the designed
feedback gain is required sufficiently large.

The rest of this paper is organized as follows. In section 2, some preliminaries
are briefly outlined and the problem description is given. The analysis for first-order
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and second-order case are shown in section 3 and section 4, respectively. A example
is given in section 5, whereas in the last section we summarize our findings and
provide concluding comments.

Notation 1. Rn×n and Cn×n denote the set of n × n real and complex matrices.
1N is an N dimensional column vector with all components 1. IN denotes the
identity matrix. For a square matrix X,X > 0 means it is positive definite. ∥ • ∥
represents Euclidean norm.

2. Preliminaries

In this section, some important knowledge about algebraic graph and problem de-
scription are provided here.

2.1. Graph theory

Algebraic graph theory is a paradigm tool for investigating the consensus, thus
we first briefly introduce some fundamental knowledge on graph theory [3]. Let
G = (V, E ,A) be a weighted directed graph of order n with the set of nodes V =
{v1, v2, . . . , vn}, set of edges E ⊆ V×V, and an adjacency matrix A = [aij ] ∈ RN×N

with nonnegative elements aij . eij = (vi, vj) denotes an edge from node vj to vi.
The set of neighbors of node vi is denoted by Ni = {vj ∈ V : (vi, vj) ∈ E}. The
graph G is undirected if aij = aji for any i, j. We define an undirected graph is
connected if there exists a path between any two distinct nodes of the graph. The
degree matrix D = {d1, d2, . . . , dn} ∈ Rn×n of graph G is a diagonal matrix, where
diagnal di =

∑
j∈Ni

aij for i = 1, 2, . . . , N . Then the Laplacian matrix of G is
defined as L = D −A.

Next, some key lemmas and assumptions are given as follows.

Definition 2.1 (Invariant set, [14]). A set S is an invariant set for a dynamic
system ẋ = f(x) if every trajectory x(t) which starts from a point in S remains in
S for all time.

Lemma 2.1 (LaSalle’s invariance principle, [14]). Consider an autonomous system
of the form ẋ = f(x), with f continuous and let V (x) : Rn → R be a scalar function
with continuous first partial derivatives. Assume that

(i) when ∥x∥ → ∞,V (x) → ∞;

(ii) for any x ∈ Rn,V̇ (x) ≤ 0.

Let S be the set of all points within Rn where V̇ (x) = 0 and M be the largest
invariant set in S. Then, every solution x(t) originating in Rn tends to M as
t → ∞.

Lemma 2.2 (Yu, [16]). For any vector x, y ∈ Rn and positive definite matrix
G ∈ Rn×n, the following matrix inequality hold:

2xT y ≤ xTGx+ yTG−1y.

Assumption 2.1. All the agents move in a bounded region consistently in sense
that there exists a compact set S = S(xi) ∈ Rn (for first-order case), S = S(xi, vi) ∈
Rn×n (for second-order case), and all the agents starting with xi(0) and vi(0) are
always in S.
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Proposition 2.1 (Zorich, [21]). A function that is continuous on a closed interval
is bounded on that interval. Moreover, there is a point in the interval where the
function assumes its maximum value and a point where it assumes its minimal
value.

2.2. Problem description

As previously mentioned, we aim to respectively study the first-order case and
second-order case, and the description of first-order one is provided as follows.

Consider a multi-agent system of size N (agents) and the corresponding dynam-
ics of each agent is described as follows.{

ẋi = ui, i = 1, 2, . . . ,M,

ẋi = f(xi, t) + ui, i = M + 1,M + 2, . . . , N,
(2.1)

where xi, ui ∈ Rp represent the position and control input vectors of agent i, re-
spectively. f(xi, t) is a continuous nonlinear function, and satisfies the Lipschitz
condition.

Under the assumption of the undirected and connected communication topology,
the consensus protocol when applying adaptive method and adaptive strategies is
determined by

ui =
N∑
j=1

cij(t)aij(xj − xi), i = 1, 2, . . . , N, (2.2)

ċij(t) = Kaij(xj − xi)
T (xj − xi), i, j = 1, 2, . . . , N, (2.3)

where K > 0 is the scalar gain, and cij(t) > 0 is the coupling weight.

cij(0) = cji(0) makes it clear that the coupling weighted matrix C = [cij ] is
symmetrical. A new Laplacian matrix can be defined as follows.

L̂ =


c11a11 c12a12 . . . c1Na1N
c21a21 c22a22 . . . c2Na2N

...
...

...
...

cN1aN1 cN2aN2 . . . cNNaNN

 . (2.4)

In addition, different with the first-order case, each agent in the scenarios of the
second-order one moves according to the following dynamics.{

ẋi = Axi +Bui, i = 1, 2, . . . ,M,

ẋi = Axi +Bui + f(xi, t), i = M + 1,M + 2, . . . , N,
(2.5)

where

A =

[
0 1
0 0

]
, B = [0, 1]T

and f(xi, t) is a continuous nonlinear function, and meets with the Lipschitz con-
dition. As for xi = [xxi, xvi]

T , xxi and xvi specify the position and velocity infor-
mation of agent i, respectively.
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The consensus protocol with an adaptive law for second-order case is expressed
by

ui = F
N∑
j=1

cij(t)aij(xi − xj), i = 1, 2, . . . , N, (2.6)

ċij = K1aij(xi − xj)
TΓ(xi − xj), i = 1, 2, . . . , N, (2.7)

where K1 is positive constant, cij(t) denotes the time-varying coupling weight be-
tween agent i and j with cij(0) = cji(0), and F ∈ Rp×n and Γ ∈ Rn×n are the
feedback gain matrices.

For notational simplicity in the following analysis, we only pay attention to the
case of p = 1. However, the analysis is valid for any dimension, and the expression
should be rewritten in terms of the Kronecker product.

3. First-order system

Here we first consider the first-order multi-agent systems. Inspired by the fact that
nonlinear dynamics or heterogeneous dynamics of the involved agents has received
fewer attention thus far, our interest is primarily in the consensus issue of hetero-
geneous multi-agent systems with linear and nonlinear dynamics. In this work, the
proposed protocol and adaptive law are beneficial for realizing the mean consensus.

With the protocol 2.2 and adaptive law 2.3, the system 2.1 is rewritten as
ẋi =

N∑
j=1

cij(t)aij(xj − xi), i = 1, 2, . . . ,M,

ẋi = f(xi, t) +

N∑
j=1

cij(t)aij(xj − xi), i = M + 1,M + 2, . . . , N.

(3.1)

By the Lyapunov direct method and LaSslle’s invariance principle, the mean
consensus is solved and described by theorem 3.1 as follows.

Theorem 3.1. We suppose that the graph G is fixed, undirected and connected,
and Assumption 2.1 holds. Thus, in the presence of the consensus protocol 2.2 and
adaptive law 2.3, the mean consensus of system 2.1 can be solved, and each coupling
weight cij converges to some finite value.

Proof. First, we define the error variable by ei = xi − 1
N

∑N
j=1 xj . From 3.1, we

gain
ėi =

N∑
j=1

cij(t)aij(ej − ei)−
1

N

N∑
j=M+1

f(xj , t), i = 1, 2, . . . ,M,

ėi = f(xi, t) +

N∑
j=1

cij(t)aij(ej − ei)−
1

N

N∑
j=M+1

f(xj , t), i = M + 1,M + 2, . . . , N.

(3.2)
Consider the Lyapunov function candidate

V =
1

2

N∑
i=1

eTi ei +
N∑
i=1

N∑
j=1

(cij −m)2

4K
, (3.3)
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where m is a positive constant and determined later.

Differentiating respect to along 3.3, we gain

V̇ =
N∑
i=1

eTi

 N∑
j=1

cij(t)aij(ej − ei)

−
N∑
i=1

eTi

 1

N

N∑
j=M+1

f(xj)


+

N∑
i=M+1

eTi f(xi) +
N∑
i=1

N∑
j=1

(cij −m)

2
aij(ej − ei)

T (ej − ei)

=−meTLe+
N∑

i=M+1

eTi f(xi), (3.4)

where e = [e1, e2, . . . , eN ]T , and L denote the Laplacian matrix of graph G.
Since G is connected, zero is the simple eigenvalue of L and all other eigenvalue

are positive [13]. There exists a unitary matix U ∈ RN×N , such that UTLU = Λ =
diag(0, λ2, . . . , λN ). 1 and 1T are the left and right eigenvectors of L corresponding
to the zero eigenvalue, respectively. Let U = [1, Y ] with Y ∈ RN×(N−1), and after
a variable transformation, i.e. ξ = [ξ1, ξ2, . . . , ξN ]T = UT e, it is easy to get

ξ1 = 1T e =

N∑
i=1

ei = 0. (3.5)

Assumption 2.1 and Proposition 2.1 can safely lead to the results that both
∥xi∥ and ∥f(xi)∥ are bounded. Suppose that the upper are ω1 and ω2, respectively.
After performing the variable transformation, equation 3.4 is rewritten as

V̇ ≤−mξTΛξ +
N∑

i=M+1

eTi ω2

=−mλ2∥ξ2∥2 −mλ3∥ξ3∥2 − · · · −mλN∥ξN∥2

+ ω2

N∑
i=M+1

∥U(i, 2)∥∥ξ2∥+ ω2

N∑
i=M+1

∥U(i, 3)∥∥ξ3∥

+ · · ·+ ω2

N∑
i=M+1

∥U(i,N)∥∥ξN∥. (3.6)

The conditions of λi > 0, i = 2, 3, . . . , N and sufficiently large m > 0, will result
in V̇ ≤ 0. Then the mean consensus problem can be solved if ei → 0 as t → ∞
according to the LaSalle’s Invariance principle.

4. Second-order system

Next, we shift our attention to the second-order multi-agent systems. By LMI tools
and adaptive method, the consensus problem of heterogeneous multi-agent systems
with linear and nonlinear dynamics is solved.

Herein it is necessary to introduce the significant lemma used in our analysis.
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Lemma 4.1 (Li, [6]). Suppose that G is connected. The N agents described by

ẋi = Axi +Bui reach consensus under the protocol as ui = cK
N∑
j=1

aij(xi −xj) with

K = −BTP−1 and the coupling weight c ≥ ( 1
λ2
), where λ2 is the smallest nonzero

eigenvalue of L and P > 0 is a solution to the following linear matrix inequality:

AP + PAT − 2BBT < 0. (4.1)

By means of the protocol 2.6 and adaptive law 2.7, the system 2.5 is rewritten
as 

ẋi = Axi +BF
N∑
j=1

cij(t)aij(xi − xj), i = 1, 2, . . . ,M,

ẋi = f(xi, t) +Axi +BF
N∑
j=1

cij(t)aij(xi − xj), i = M + 1,M + 2, . . . , N.

(4.2)

Motivated by 4.1, we obtain the consensus results described as theorem 4.1 in
the following.

Theorem 4.1. Suppose the graph G is fixed, undirected and connected, and As-
sumption 2.1 holds. The adopted consensus protocol 2.6 with F = −BTP−1 and
adaptive law 2.7 with Γ = P−1BBTP−1, help to realize the mean consensus of
system 2.5. Moreover, P is a solution of the LMI 4.1 and 4.3, and each coupling
weight cij converges to some finite value.

AP + PAT − 2BBT < −lI2, (4.3)

where l > 0 is sufficiently large.

Proof. The analysis is similar to theorem 3.1. Define the error variable ei =
xi − 1

N

∑N
j=1 xj . From 4.2, we have

ėi = Aei +BF
N∑
j=1

cij(t)aij(ei − ej)−
1

N

N∑
j=M+1

f(xj , t)

i = 1, 2, . . . ,M,

ėi = f(xi, t) +Aei +BF

N∑
j=1

cij(t)aij(ei − ej)−
1

N

N∑
j=M+1

f(xj , t)

i = M + 1,M + 2, . . . , N.

(4.4)

Consider the Lyapunov function candidate

V =

N∑
i=1

eTi P
−1ei +

N∑
i=1

N∑
j=1

(cij −m)2

2K1
, (4.5)

where m is a positive constant and determined later.
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Differentiating respect to along 4.4, we have

V̇ =2
N∑
i=1

eTi P
−1ėi +

N∑
i=1

N∑
j=1

(cij −m)

K1
ċij

=2
N∑
i=1

eTi P
−1

Aei +BF
N∑
j=1

cij(t)aij(ei − ej)


+ 2

N∑
i=1

eTi P
−1f(xi, t) +

N∑
i=1

N∑
j=1

(cij −m)aij(ei − ej)
T (ei − ej). (4.6)

Since F = −BTP−1, Γ = P−1BBTP−1, let ēi = P−1ei, it is easy to see that

V̇ =
N∑
i=1

ēTi (AP + PAT )ēi + 2
N∑

i=M+1

ēTi f(xi, t)− 2m
N∑
i=1

N∑
j=1

Lij ē
T
i BBT ēj

= ēT
[
IN ⊗ (AP + PAT )− 2mL ⊗BBT

]
ē+ 2

N∑
i=M+1

ēTi f(xi, t), (4.7)

where ē = [ēT1 , ē
T
2 , . . . , ē

T
N ]T , and L denotes the Laplacian matrix of graph G.

There exists a unitary matrix U ∈ RN×N , such that UTLU = Λ = diag(0, λ2, . . . ,
λN ). Let U = [1, Y ] with Y ∈ RN×(N−1). After the variable transformation of
ξ = [ξT1 , ξ

T
2 , . . . , ξ

T
N ]T = (UT ⊗ I2)ē, we get

ξ1 =
(
1T ⊗ I2

)
ē = 0, (4.8)

V̇ = ξT
[
IN ⊗

(
AP + PAT )

)
− 2mΛ⊗BBT

]
ξ + 2

N∑
i=M+1

ēTi f(xi, t)

≤
N∑
i=2

ξTi
(
AP + PAT − 2mλiBBT

)
ξi + 2ω2

N∑
i=M+1

N∑
j=2

∥ (Uij ⊗ I2) ξj∥.

(4.9)

After choosing an appropriate m satisfying the condition of mλi ≥ 1, i =
2, . . . , N , according to the lemma 4.1, we have

AP + PAT − 2mλiBBT ≤ AP + PAT − 2BBT < 0. (4.10)

There exists a unitary matrix U1 ∈ R2×2, such that UT
1 (AP+PAT−2mλiBBT )U1

= Λ1 = diag(λ11, λ22) with λii < 0, i = 1, 2. Similar with that pointed out above,
the variable transformation of δi = [δx, δv]

T = UT
1 ξi leads to

V̇ ≤
N∑
i=2

δTi diag(λ11, λ22)δi + 2ω2

N∑
i=M+1

N∑
j=2

∥ (U1 ⊗ Uij) δj∥

=
N∑
i=2

λ11∥δix∥2 +
N∑
i=2

λ22∥δiv∥2 +
N∑

i=M+1

N∑
j=2

2ω2∥(U1(1, 1) + U1(2, 1))Uij∥∥δjx∥

+
N∑

i=M+1

N∑
j=2

2ω2∥(U1(1, 2) + U1(2, 2))Uij∥∥δjv∥. (4.11)
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Sufficiently large l > 0 will support that −λii > 0, i = 1, 2 is sufficiently large
and thus V̇ ≤ 0. Then by LaSalle’s Invariance principle, if follow that ei → 0, as
t → ∞. The mean consensus problem is solved.

5. Examples

Further, it is worthy to verify the effectiveness of the mentioned theoretical results
and we present a plausible example as follows.
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1

1.5
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agent1
agent2
agent3
mean 

Figure 1. State trajectories of first-order system
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Figure 2. Trajectories of coupling weight cij of first-order system

Example 5.1. To illustrate, we consider a heterogeneous multi-agent system with
3 agents. Agent 1 and 2 are described by the first-order linear dynamics, while
agent 3 is formulated as the first-order nonlinear dynamics. The nonlinear function
is denoted by f(xi, t) = sin(xit). Here, the coupling weight is set as cij(0) =
cji(0) = 0. The communication topology among the agent is described by

A1 =

 0 1 1
1 0 1
1 1 0

 .
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The state trajectories of first-order system 2.1 and coupling wight cij are sum-
marized by Figure 1 and Figure 2, respectively. Notably, our results afford clear
evidences that each agents will converge to the mean state and the coupling weight
will converge to some finite value.

6. Conclusion

The consensus problem of multi-agents has become a blooming and meaningful
topic for researchers. Previous research has identified a series of solutions to the
consensus behaviors. And yet, the established model can be extended and made
more realistic in a variety of ways. This paper proposes and studies the consensus
problem of a heterogeneous multi-agent system composed of linear agents and non-
linear agents concurrently. In this setting, the mean consensus problem is solved
for first-order case and second-order case under undirected and connected networks,
with recourse to the adaptive method and Lyapunov stability theory. Moreover, a
plausible example is provided to illustrate validness of the proposed consensus pro-
tocols. Our work offers a new perspective on the heterogeneity of multi-agent and
its roles in influencing the collective behaviors of the involved system.
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